Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Pharmacol Sci ; 136(4): 249-256, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29555184

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are expected to become a useful tool for proarrhythmia risk prediction in the non-clinical drug development phase. Several features including electrophysiological properties, ion channel expression profile and drug responses were investigated using commercially available hiPSC-CMs, such as iCell-CMs and Cor.4U-CMs. Although drug-induced arrhythmia has been extensively examined by microelectrode array (MEA) assays in iCell-CMs, it has not been fully understood an availability of Cor.4U-CMs for proarrhythmia risk. Here, we evaluated the predictivity of proarrhythmia risk using Cor.4U-CMs. MEA assay revealed linear regression between inter-spike interval and field potential duration (FPD). The hERG inhibitor E-4031 induced reverse-use dependent FPD prolongation. We next evaluated the proarrhythmia risk prediction by a two-dimensional map, which we have previously proposed. We determined the relative torsade de pointes risk score, based on the extent of FPD with Fridericia's correction (FPDcF) change and early afterdepolarization occurrence, and calculated the margins normalized to free effective therapeutic plasma concentrations. The drugs were classified into three risk groups using the two-dimensional map. This risk-categorization system showed high concordance with the torsadogenic information obtained by a public database CredibleMeds. Taken together, these results indicate that Cor.4U-CMs can be used for drug-induced proarrhythmia risk prediction.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Descoberta de Drogas , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Biomarcadores Farmacológicos , Células Cultivadas , Previsões , Humanos , Síndrome do QT Longo/induzido quimicamente , Microeletrodos , Risco , Torsades de Pointes/induzido quimicamente
2.
Regul Toxicol Pharmacol ; 88: 238-251, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28634147

RESUMO

With the aim of reconsidering ICH S7B and E14 guidelines, a new in vitro assay system has been subjected to worldwide validation to establish a better prediction platform for potential drug-induced QT prolongation and the consequent TdP in clinical practice. In Japan, CSAHi HEART team has been working on hiPS-CMs in the MEA (hiPS-CMs/MEA) under a standardized protocol and found no inter-facility or lot-to-lot variability for proarrhythmic risk assessment of 7 reference compounds. In this study, we evaluated the responses of hiPS-CMs/MEA to another 31 reference compounds associated with cardiac toxicities, and gene expression to further clarify the electrophysiological characteristics over the course of culture period. The hiPS-CMs/MEA assay accurately predicted reference compounds potential for arrhythmogenesis, and yielded results that showed better correlation with target concentrations of QTc prolongation or TdP in clinical setting than other current in vitro and in vivo assays. Gene expression analyses revealed consistent profiles in all samples within and among the testing facilities. This report would provide CiPA with informative guidance on the use of the hiPS-CMs/MEA assay, and promote the establishment of a new paradigm, beyond conventional in vitro and in vivo assays for cardiac safety assessment of new drugs.


Assuntos
Síndrome do QT Longo/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Cardiotônicos/toxicidade , Eletrodos , Expressão Gênica , Guias como Assunto , Humanos , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Ativação do Canal Iônico/genética , Japão , Contração Miocárdica/genética , Miócitos Cardíacos/fisiologia
3.
J Pharm Sci ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153661

RESUMO

Drug-induced kidney injury (DIKI) is the major cause of acute kidney injury (AKI). Renal proximal tubular epithelial cells (RPTECs) are the primary target sites of DIKI and express transporters involved in renal drug disposition. In the present study, we focused on three-dimensionally cultured human RPTECs (3D-RPTECs) with elevated expression of drug transporters to investigate their utility in DIKI evaluation. Intracellular ATP levels in 3D-RPTECs are reduced by tenofovir and cisplatin that are substrates of an organic anion transporter 1 and an organic cation transporter 2, respectively. In addition, 3D-RPTECs were exposed to 17 and 15 drugs that are positive and negative to RPTEC toxicity, respectively, for up to 28 d. The 20 % decreasing concentration of drugs for ATP amount (EC20) was obtained, and the ratio of EC20 values and clinical maximum concentration (Cmax) ≤100 were used as cut-off value to evaluate potential of DIKI. The sensitivities of 3D-RPTECs were 82.4 % and 88.2 % after 7 d and 28 d of drug exposure, respectively, and the specificities were 100 % and 93.3 %, respectively. The predictive performance of 3D-RPTECs was higher than that of two-dimensional cultured RPTECs and the kidney cell line HK-2. In conclusion, 3D-RPTECs are useful for in vitro evaluation of RPTEC injury by measuring intracellular ATP levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA