Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Physiol Renal Physiol ; 327(4): F655-F666, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39205660

RESUMO

Renal transporters (cotransporters, channels, and claudins) mediate homeostasis of fluids and electrolytes and are targets of hormonal and therapeutic regulators. Assessing renal transporter abundance with antibody probes by immunoblotting is an essential tool for mechanistic studies. Although journals require authors to demonstrate antibody specificity, there are no consensus guidelines for kidney sample preparation leading to lab-to-lab variability in immunoblot results. In this study, we determined the impact of sample preparation, specifically freeze-thawed (Frozen) versus freshly processed (Fresh) kidneys (female and male rats and mice) on immunoblot signal detection of 15 renal transporters and the impact of protease inhibitors during homogenization. In female Sprague-Dawley rat kidneys homogenized with aprotinin, Na2EDTA, PMSF, and phosphatase inhibitors, immunodetection signals were ∼50% lower in Frozen versus Fresh samples for most transporters. Inclusion of additional inhibitors (Roche cOmplete Protease Inhibitor, "+") only partially increased transporter immunoblot signals to near Fresh levels. In male Sprague-Dawley rats, immunoblot signal density was lower in Frozen+ versus Fresh+ despite additional inhibitors. In C57BL/6 male mice, immunoblot signals from proximal tubule transporters were lower in Frozen versus Fresh by ∼25-50% and greater in Frozen+. In contrast, immunodetection signal was equivalent in female Frozen+ versus female Fresh+ for claudin 2, villin, AQP1, NKCC2, NCC, ENaCß, ENaCÉ£, claudin 7, AQP2, NKAα1, and NKAß1. Thus, kidney sample preparation variables, including freeze-thaw and protease inhibition, have substantial transporter-specific effects on quantification of renal transporter abundance by immunoblot. These findings underscore the critical importance of assessing and reporting the impact of sample preparation protocols on transporter recovery to ensure robust rigor and reproducibility. NEW & NOTEWORTHY Freeze-thawing kidneys before homogenization is widely accepted in renal research. This study demonstrates that if kidneys are freeze-thawed just once before homogenization, immunoblot signals are reduced in a transporter-specific manner in rats and mice dependent on sex and that immunoblot signals can be partially recovered by adding additional protease inhibitors. These findings underscore the critical importance of assessing the impact of sample preparation, including freeze-thaw versus fresh, to ensure robust rigor and reproducibility.


Assuntos
Rim , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Animais , Feminino , Masculino , Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Congelamento , Ratos , Camundongos , Inibidores de Proteases/farmacologia
2.
Am J Physiol Heart Circ Physiol ; 327(1): H118-H130, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758130

RESUMO

One of the initiating events in preeclampsia (PE) is placental ischemia. Rodent models of placental ischemia do not present with vascular endothelial dysfunction, a hallmark of PE. We previously demonstrated a role for leptin in endothelial dysfunction in pregnancy in the absence of placental ischemia. We hypothesized that placental ischemia requires hyperleptinemia and endothelial mineralocorticoid receptor (ECMR) expression to induce PE-associated endothelial dysfunction in pregnant mice. We induced placental ischemia via the reduced uterine perfusion pressure (RUPP) procedure in pregnant ECMR-intact (ECMR+/+) and ECMR deletion (ECMR-/-) mice at gestational day (GD) 13. ECMR+/+ RUPP pregnant mice also received concurrent leptin infusion via miniosmotic pump (0.9 mg/kg/day). RUPP increased blood pressure via radiotelemetry and decreased fetal growth in ECMR+/+ pregnant mice. Both increases in blood pressure and reduced fetal growth were abolished in RUPP ECMR-/- mice. Placental ischemia did not decrease endothelial-dependent relaxation to acetylcholine (ACh) but increased phenylephrine (Phe) contraction in mesenteric arteries of pregnant mice, which was ablated by ECMR deletion. Addition of leptin to RUPP mice significantly reduced ACh relaxation in ECMR+/+ pregnant mice, accompanied by an increase in soluble FMS-like tyrosine kinase-1 (sFlt-1)/placental growth factor (PLGF) ratio. In conclusion, our data indicate that high leptin levels drive endothelial dysfunction in PE and that ECMR is required for clinical characteristics of hypertension and fetal growth restriction in placental ischemia PE. Collectively, we show that both ECMR and leptin play a role to mediate PE.NEW & NOTEWORTHY Leptin is a key feature of preeclampsia that initiates vascular endothelial dysfunction in preeclampsia characterized by placental ischemia. Endothelial mineralocorticoid receptor (ECMR) deletion in placental ischemia protects pregnant mice from elevations in blood pressure and fetal growth restriction in pregnancy. Increases in leptin production mediate the key pathological feature of endothelial dysfunction in preeclampsia in rodents. ECMR activation contributes to the increase in blood pressure and fetal growth restriction in preeclampsia.


Assuntos
Isquemia , Leptina , Placenta , Pré-Eclâmpsia , Receptores de Mineralocorticoides , Animais , Gravidez , Feminino , Leptina/metabolismo , Leptina/sangue , Placenta/metabolismo , Placenta/irrigação sanguínea , Isquemia/fisiopatologia , Isquemia/metabolismo , Isquemia/genética , Receptores de Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Pré-Eclâmpsia/genética , Camundongos Knockout , Pressão Sanguínea , Camundongos Endogâmicos C57BL , Camundongos , Modelos Animais de Doenças , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/fisiopatologia , Retardo do Crescimento Fetal/genética , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Vasodilatação/efeitos dos fármacos
3.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069340

RESUMO

Sarcopenia poses a significant challenge to public health and can severely impact the quality of life of aging populations. Despite extensive efforts to study muscle degeneration using traditional animal models, there is still a lack of effective diagnostic tools, precise biomarkers, and treatments for sarcopenia. Zebrafish models have emerged as powerful tools in biomedical research, providing unique insights into age-related muscle disorders like sarcopenia. The advantages of using zebrafish models include their rapid growth outside of the embryo, optical transparency during early developmental stages, high reproductive potential, ease of husbandry, compact size, and genetic tractability. By deepening our understanding of the molecular processes underlying sarcopenia, we may develop novel diagnostic tools and effective treatments that can improve the lives of aging individuals affected by this condition. This review aims to explore the unique advantages of zebrafish as a model for sarcopenia research, highlight recent breakthroughs, outline potential avenues for future investigations, and emphasize the distinctive contributions that zebrafish models offer. Our research endeavors to contribute significantly to address the urgent need for practical solutions to reduce the impact of sarcopenia on aging populations, ultimately striving to enhance the quality of life for individuals affected by this condition.


Assuntos
Sarcopenia , Animais , Envelhecimento/fisiologia , Músculo Esquelético , Atrofia Muscular , Qualidade de Vida , Peixe-Zebra
4.
Kidney Int ; 102(1): 121-135, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483522

RESUMO

Ribosomal protein S6 (rpS6) phosphorylation mediates the hypertrophic growth of kidney proximal tubule cells. However, the role of rpS6 phosphorylation in podocyte hypertrophy and podocyte loss during the pathogenesis of focal segmental glomerulosclerosis (FSGS) remains undefined. Here, we examined rpS6 phosphorylation levels in kidney biopsy specimens from patients with FSGS and in podocytes from mouse kidneys with Adriamycin-induced FSGS. Using genetic and pharmacologic approaches in the mouse model of FSGS, we investigated the role of rpS6 phosphorylation in podocyte hypertrophy and loss during development and progression of FSGS. Phosphorylated rpS6 was found to be markedly increased in the podocytes of patients with FSGS and Adriamycin-induced FSGS mice. Genetic deletion of the Tuberous sclerosis 1 gene in kidney glomerular podocytes activated mammalian target of rapamycin complex 1 signaling to rpS6 phosphorylation, resulting in podocyte hypertrophy and pathologic features similar to those of patients with FSGS including podocyte loss, leading to segmental glomerulosclerosis. Since protein phosphatase 1 is known to negatively regulate rpS6 phosphorylation, treatment with an inhibitor increased phospho-rpS6 levels, promoted podocyte hypertrophy and exacerbated formation of FSGS lesions. Importantly, blocking rpS6 phosphorylation (either by generating congenic rpS6 knock-in mice expressing non-phosphorylatable rpS6 or by inhibiting ribosomal protein S6 kinase 1-mediated rpS6 phosphorylation with an inhibitor) significantly blunted podocyte hypertrophy, inhibited podocyte loss, and attenuated formation of FSGS lesions. Thus, our study provides genetic and pharmacologic evidence indicating that specifically targeting rpS6 phosphorylation can attenuate the development of FSGS lesions by inhibiting podocyte hypertrophy and associated podocyte depletion.


Assuntos
Glomerulosclerose Segmentar e Focal , Podócitos , Animais , Doxorrubicina , Glomerulosclerose Segmentar e Focal/metabolismo , Humanos , Hipertrofia , Mamíferos/metabolismo , Camundongos , Fosforilação , Podócitos/patologia , Proteínas Serina-Treonina Quinases , Proteína S6 Ribossômica/metabolismo
5.
Compr Physiol ; 13(3): 4869-4878, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358509

RESUMO

Renal function increases in pregnancy due to the significant hemodynamic demands of plasma volume expansion and the growing feto-placental unit. Therefore, compromised renal function increases the risk for adverse outcomes for pregnant women and their offspring. Acute kidney injury (AKI), or sudden loss of kidney function, is a significant event that requires aggressive clinical management. An AKI event in pregnancy, or in the postpartum period, significantly increases the risk of adverse pregnancy events and fetal and maternal mortality. At present, there are significant clinical challenges to the identification, diagnosis, and management of pregnancy-associated AKI due to changing hemodynamics in pregnancy that alter baseline values and to treatment limitations in pregnancy. Emerging data indicate that patients that are considered clinically recovered following AKI, which is currently assessed primarily by return of plasma creatinine levels to normal, maintain risk of long-term complications indicating that current recovery criteria mask the detection of subclinical renal damage. In association, recent large-scale clinical cohorts indicate that a history of AKI predisposes women to adverse pregnancy events even years after the patient is considered recovered from AKI. Mechanisms via which women develop AKI in pregnancy, or develop adverse pregnancy events post-AKI, are poorly understood and require significant study to better prevent and treat AKI in women. © 2023 American Physiological Society. Compr Physiol 13:4869-4878, 2023.


Assuntos
Injúria Renal Aguda , Placenta , Feminino , Humanos , Gravidez , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/terapia , Injúria Renal Aguda/etiologia , Rim , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA