Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Appl Microbiol ; 125(5): 1396-1407, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30080957

RESUMO

AIMS: Using substrate-induced gene-expression (SIGEX) screening on subseafloor sediment samples from the Nankai Trough, Japan, we identified gene fragments showing an induction response to metal ions. METHODS AND RESULTS: Environmental DNA libraries in Escherichia coli host cells were tested by the addition of metal ions (Ni2+ , Co2+ , Ga3+ or Mo6+ ), followed by cell sorting of clones exhibiting green fluorescence upon co-expression of green fluorescence protein downstream of the inserted gene fragments. One clone displayed Ni2+ -specific induction, three clones displayed Ga3+ -specific induction and three clones displayed an induction response to multiple metal ions. DNA sequence analysis showed that a variety of genes showed induction responses in the screened clones. CONCLUSIONS: Using the SIGEX approach, we retrieved gene fragments with no previously identified response to metal ions that exhibited metal-ion-induced expression. This method has the potential to promote exploration of gene function through gene-induction response. SIGNIFICANCE AND IMPACT OF THE STUDY: We successfully linked gene-induction response with sequence information for gene fragments of previously unknown function. The SIGEX-based approach exhibited the potential to identify genetic function in unknown gene pools from the deep subseafloor biosphere, as well as novel genetic components for future biotechnological applications.


Assuntos
Organismos Aquáticos/genética , Metais/farmacologia , Organismos Aquáticos/metabolismo , Escherichia coli/genética , Expressão Gênica/efeitos dos fármacos , Biblioteca Gênica , Sedimentos Geológicos , Proteínas de Fluorescência Verde/genética , Íons/farmacologia , Japão , Análise de Sequência de DNA
2.
Adv Appl Microbiol ; 95: 149-78, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27261783

RESUMO

Over the past few decades, the subseafloor biosphere has been explored by scientific ocean drilling to depths of about 2.5km below the seafloor. Although organic-rich anaerobic sedimentary habitats in the ocean margins harbor large numbers of microbial cells, microbial populations in ultraoligotrophic aerobic sedimentary habitats in the open ocean gyres are several orders of magnitude less abundant. Despite advances in cultivation-independent molecular ecological techniques, exploring the low-biomass environment remains technologically challenging, especially in the deep subseafloor biosphere. Reviewing the historical background of deep-biosphere analytical methods, the importance of obtaining clean samples and tracing contamination, as well as methods for detecting microbial life, technological aspects of molecular microbiology, and detecting subseafloor metabolic activity will be discussed.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Técnicas Microbiológicas/métodos , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biomassa , Ecossistema , História do Século XX , História do Século XXI , Técnicas Microbiológicas/história , Técnicas Microbiológicas/instrumentação , Água do Mar/química
3.
Nat Commun ; 13(1): 312, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078973

RESUMO

A fourth of the global seabed sediment volume is buried at depths where temperatures exceed 80 °C, a previously proposed thermal barrier for life in the subsurface. Here, we demonstrate, utilizing an extensive suite of radiotracer experiments, the prevalence of active methanogenic and sulfate-reducing populations in deeply buried marine sediment from the Nankai Trough subduction zone, heated to extreme temperature (up to ~120 °C). The small microbial community subsisted with high potential cell-specific rates of energy metabolism, which approach the rates of active surface sediments and laboratory cultures. Our discovery is in stark contrast to the extremely low metabolic rates otherwise observed in the deep subseafloor. As cells appear to invest most of their energy to repair thermal cell damage in the hot sediment, they are forced to balance delicately between subsistence near the upper temperature limit for life and a rich supply of substrates and energy from thermally driven reactions of the sedimentary organic matter.


Assuntos
Bactérias/metabolismo , Radioisótopos de Carbono/metabolismo , Sedimentos Geológicos/microbiologia , Temperatura Alta , Microbiota , Sulfatos/metabolismo , Radioisótopos de Enxofre/metabolismo , Bactérias/crescimento & desenvolvimento , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Traçadores Radioativos
4.
Science ; 349(6246): 420-4, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26206933

RESUMO

Microbial life inhabits deeply buried marine sediments, but the extent of this vast ecosystem remains poorly constrained. Here we provide evidence for the existence of microbial communities in ~40° to 60°C sediment associated with lignite coal beds at ~1.5 to 2.5 km below the seafloor in the Pacific Ocean off Japan. Microbial methanogenesis was indicated by the isotopic compositions of methane and carbon dioxide, biomarkers, cultivation data, and gas compositions. Concentrations of indigenous microbial cells below 1.5 km ranged from <10 to ~10(4) cells cm(-3). Peak concentrations occurred in lignite layers, where communities differed markedly from shallower subseafloor communities and instead resembled organotrophic communities in forest soils. This suggests that terrigenous sediments retain indigenous community members tens of millions of years after burial in the seabed.


Assuntos
Organismos Aquáticos/classificação , Archaea/classificação , Bactérias/classificação , Carvão Mineral/microbiologia , Sedimentos Geológicos/microbiologia , Consórcios Microbianos , Água do Mar/microbiologia , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biomarcadores/metabolismo , Dióxido de Carbono/metabolismo , Japão , Metano/metabolismo , Mathanococcus/classificação , Mathanococcus/genética , Mathanococcus/metabolismo , Methanosarcina barkeri/classificação , Methanosarcina barkeri/genética , Methanosarcina barkeri/metabolismo , Oceano Pacífico
5.
J Biosci Bioeng ; 88(5): 551-6, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-16232660

RESUMO

Carbon steel coupons were exposed to nutritionally-poor synthetic wastewater inoculated with activated sludge from a municipal waste water plant. Biofilm formation was observed after one day incubation, and the thickness of the film increased proportionally with the incubation period. Mass loss of the coupons was also proportional to the incubation time, and reached 70.4 (mg/cm2) after incubation for 140 d. The observed mass loss was 5 times as much as that under sterile conditions. To characterize the microbiologically influenced corrosion (MIC) of carbon steel, structural analysis of the biofilm was performed. Rapid decrease in the dissolved oxygen (DO) concentration in the zone near the surface of the biofilm was observed by a microelectrode mounted on a micromanipulator. Heterogeneous distribution of the DO concentration on the surface of the steel plate was observed after multiple analyses. The heterogeneous structure of the biofilm composed of viable cells, inanimate objects, voids and pores was elucidated by confocal scanning laser microscopy. Concentrations of both aerobic bacteria and sulphur-reducing bacteria in the biofilm decreased with the incubation time, indicating that the increase in the biofilm thickness reflected an increase in the density of dead microbial cells or in extracellular polymer accumulation by the microbes. The average roughness of the metal surface observed after 112 d of incubation was +/-7.14 microm, which was 14.1% of the average thickness of the coupons. These observations indicated that uneven distribution of the DO profile and the cell concentration were critical for MIC of the carbon steel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA