Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 615(7954): 841-847, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36991191

RESUMO

The abyssal ocean circulation is a key component of the global meridional overturning circulation, cycling heat, carbon, oxygen and nutrients throughout the world ocean1,2. The strongest historical trend observed in the abyssal ocean is warming at high southern latitudes2-4, yet it is unclear what processes have driven this warming, and whether this warming is linked to a slowdown in the ocean's overturning circulation. Furthermore, attributing change to specific drivers is difficult owing to limited measurements, and because coupled climate models exhibit biases in the region5-7. In addition, future change remains uncertain, with the latest coordinated climate model projections not accounting for dynamic ice-sheet melt. Here we use a transient forced high-resolution coupled ocean-sea-ice model to show that under a high-emissions scenario, abyssal warming is set to accelerate over the next 30 years. We find that meltwater input around Antarctica drives a contraction of Antarctic Bottom Water (AABW), opening a pathway that allows warm Circumpolar Deep Water greater access to the continental shelf. The reduction in AABW formation results in warming and ageing of the abyssal ocean, consistent with recent measurements. In contrast, projected wind and thermal forcing has little impact on the properties, age and volume of AABW. These results highlight the critical importance of Antarctic meltwater in setting the abyssal ocean overturning, with implications for global ocean biogeochemistry and climate that could last for centuries.


Assuntos
Congelamento , Temperatura Alta , Oceanos e Mares , Água do Mar , Movimentos da Água , Regiões Antárticas , Água do Mar/análise , Água do Mar/química , Aceleração , Incerteza , Mudança Climática
2.
Glob Chang Biol ; 30(8): e17467, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39168490

RESUMO

Antarctica's unique marine ecosystems are threatened by the arrival of non-native marine species on rafting ocean objects. The harsh environmental conditions in Antarctica prevent the establishment of many such species, but warming around the continent and the opening up of ice-free regions may already be reducing these barriers. Although recent genomic work has revealed that rafts-potentially carrying diverse coastal passengers-reach Antarctica from sub-Antarctic islands, Antarctica's vulnerability to incursions from Southern Hemisphere continents remains unknown. Here we use 0.1° global ocean model simulations to explore whether drift connections exist between more northern, temperate landmasses and the Antarctic coastline. We show that passively floating objects can drift to Antarctica not only from sub-Antarctic islands, but also from continental locations north of the Subtropical Front including Australia, South Africa, South America and Zealandia. We find that the Antarctic Peninsula is the region at highest risk for non-native species introductions arriving by natural oceanic dispersal, highlighting the vulnerability of this region, which is also at risk from introductions via ship traffic and rapid warming. The widespread connections with sub-Antarctic and temperate landmasses, combined with an increasing abundance of marine anthropogenic rafting vectors, poses a growing risk to Antarctic marine ecosystems, especially as environmental conditions around Antarctica are projected to become more suitable for non-native species in the future.


Assuntos
Espécies Introduzidas , Regiões Antárticas , Ecossistema , Modelos Teóricos , Organismos Aquáticos/fisiologia , Animais , Oceanos e Mares
3.
Ann Rev Mar Sci ; 14: 405-430, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34437811

RESUMO

Ocean ventilation is the transfer of tracers and young water from the surface down into the ocean interior. The tracers that can be transported to depth include anthropogenic heat and carbon, both of which are critical to understanding future climate trajectories. Ventilation occurs in both high- and midlatitude regions, but it is the southern midlatitudes that are responsible for the largest fraction of anthropogenic heat and carbon uptake; such Southern Ocean ventilation is the focus of this review. Southern Ocean ventilation occurs through a chain of interconnected mechanisms, including the zonally averaged meridional overturning circulation, localized subduction, eddy-driven mixing along isopycnals, and lateral transport by subtropical gyres. To unravel the complex pathways of ventilation and reconcile conflicting results, here we assess the relative contribution of each of thesemechanisms, emphasizing the three-dimensional and temporally varying nature of the ventilation of the Southern Ocean pycnocline. We conclude that Southern Ocean ventilation depends on multiple processes and that simplified frameworks that explain ventilation changes through a single process are insufficient.


Assuntos
Clima , Movimentos da Água , Carbono/análise , Temperatura Alta , Oceanos e Mares
4.
Curr Biol ; 32(14): 3154-3160.e3, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35679870

RESUMO

Globally, species distributions are shifting in response to environmental change,1 and those that cannot disperse risk extinction.2 Many taxa, including marine species, are showing poleward range shifts as the climate warms.3 In the Southern Hemisphere, however, circumpolar oceanic fronts can present barriers to dispersal.4 Although passive, southward movement of species across this barrier has been considered unlikely,5,6 the recent discovery of buoyant kelp rafts on beaches in Antarctica7,8 demonstrates that such journeys are possible. Rafting is a key process by which diverse taxa-including terrestrial, e.g., Lindo,9 Godinot,10 and Censky et al.,11 and marine, e.g., Carlton et al.12 and Gillespie et al.13 species-can cross oceans.14 Kelp rafts can carry passengers7,15-17 and thus can act as vectors for long-distance dispersal of coastal organisms. The small numbers of kelp rafts previously found in Antarctica7,8 do not, however, shed much light on the frequency of such dispersal events.18 We use a combination of high-resolution phylogenomic analyses (>220,000 SNPs) and oceanographic modeling to show that long-distance biological dispersal events in Southern Ocean are not rare. We document tens of kelp (Durvillaea antarctica) rafting events of thousands of kilometers each, over several decades (1950-2019), with many kelp rafts apparently still reproductively viable. Modeling of dispersal trajectories from genomically inferred source locations shows that distant landmasses are well connected, for example South Georgia and New Zealand, and the Kerguelen Islands and Tasmania. Our findings illustrate the power of genomic approaches to track, and modeling to show frequencies of, long-distance dispersal events.


Assuntos
Kelp , Phaeophyceae , Genômica , Kelp/fisiologia , Oceanografia , Filogenia
5.
Nat Commun ; 9(1): 209, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335401

RESUMO

The original version of this Article contained errors in Fig. 6. In panel a, the grey highlights obscured the curves for CESM, CM2.6 and SOSE, and the labels indicating SWIR, KP, MR, PAR, and DP were inadvertently omitted. These have now been corrected in both the PDF and HTML versions of the Article.

6.
Nat Commun ; 8(1): 172, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28769035

RESUMO

Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.

7.
Nat Commun ; 6: 10082, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26656850

RESUMO

The interoceanic transfer of seawater between the Indian Ocean and the Atlantic, 'Agulhas leakage', forms a choke point for the overturning circulation in the global ocean. Here, by combining output from a series of high-resolution ocean and climate models with in situ and satellite observations, we construct a time series of Agulhas leakage for the period 1870-2014. The time series demonstrates the impact of Southern Hemisphere westerlies on decadal timescales. Agulhas leakage shows a correlation with the Atlantic Multi-decadal Oscillation on multi-decadal timescales; the former leading by 15 years. This is relevant for climate in the North Atlantic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA