Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 137(5): 2495-501, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25994682

RESUMO

The temporal occurrence of deep diving cetaceans in the Josephine Seamount High Seas Marine Protected Area (JSHSMPA), south-west Portugal, was monitored using a passive acoustic recorder. The recorder was deployed on 13 May 2010 at a depth of 814 m during the North Atlantic Treaty Organization Centre for Maritime Research and Experimentation cruise "Sirena10" and recovered on 6 June 2010. The recorder was programmed to record 40 s of data every 2 min. Acoustic data analysis, for the detection and classification of echolocation clicks, was performed using automatic detector/classification systems: M3R (Marine Mammal Monitoring on Navy Ranges), a custom matlab program, and an operator-supervised custom matlab program to assess the classification performance of the detector/classification systems. M3R CS-SVM algorithm contains templates to detect beaked whales, sperm whales, blackfish (pilot and false killer whales), and Risso's dolphins. The detections of each group of odontocetes was monitored as a function of time. Blackfish and Risso's dolphins were detected every day, while beaked whales and sperm whales were detected almost every day. The hourly distribution of detections reveals that blackfish and Risso's dolphins were more active at night, while beaked whales and sperm whales were more active during daylight hours.


Assuntos
Acústica , Cetáceos/classificação , Cetáceos/fisiologia , Ecolocação/classificação , Monitoramento Ambiental/métodos , Vocalização Animal/classificação , Algoritmos , Animais , Oceano Atlântico , Ritmo Circadiano , Movimento (Física) , Processamento de Sinais Assistido por Computador , Som , Espectrografia do Som , Especificidade da Espécie , Fatores de Tempo
2.
J Acoust Soc Am ; 135(1): 521-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24437792

RESUMO

Ecological acoustic recorders (EARs) were moored off the bottom in relatively deep depths (609-710 m) at five locations around the island of Kauai. Initially, the EARs had an analog-to-digital sample rate of 64 kHz with 30-s recordings every 5 min. After the second deployment the sampling rate was increased to 80 kHz in order to better record beaked whale biosonar signals. The results of the 80 kHz recording are discussed in this manuscript and are the results of three deployments over a year's period (January 2010 to January 2011). Five categories of the biosonar signal detection of deep diving odontocetes were created, short-finned pilot whales, sperm whales, beaked whales, Risso's dolphins, and unknown dolphins. During any given day, at least one species of these deep diving odontocetes were detected. On many days, several species were detected. The biosonar signals of short-finned pilot whales were detected the most often with approximately 30% of all the signals, followed by beaked and sperm whales approximately 22% and 21% of all clicks, respectively. The seasonal patterns were not very strong except in the SW location with distinct peak in detection during the months of April-June 2010 period.


Assuntos
Acústica/instrumentação , Mergulho , Golfinhos/psicologia , Monitoramento Ambiental/instrumentação , Comportamento Alimentar , Estações do Ano , Transdutores , Vocalização Animal , Baleias/psicologia , Animais , Golfinhos/classificação , Golfinhos/fisiologia , Desenho de Equipamento , Havaí , Humanos , Oceanos e Mares , Densidade Demográfica , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Especificidade da Espécie , Fatores de Tempo , Baleias/classificação , Baleias/fisiologia
3.
J Acoust Soc Am ; 133(5): 3119-27, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23654414

RESUMO

Remote autonomous ecological acoustic recorders (EARs) were deployed in deep waters at five locations around the island of Kauai and one in waters off Ni'ihau in the main Hawaiian island chain. The EARs were moored to the bottom at depths between 400 and 800 m. The data acquisition sampling rate was 80 kHz and acoustic signals were recorded for 30 s every 5 min to conserve battery power and disk space. The acoustic data were analyzed with the M3R (Marine Mammal Monitoring on Navy Ranges) software, an energy-ratio-mapping algorithm developed at Oregon State University and custom MATLAB programs. A variety of deep diving odontocetes, including pilot whales, Risso's dolphins, sperm whales, spinner and pan-tropical spotted dolphins, and beaked whales were detected at all sites. Foraging activity typically began to increase after dusk, peaked in the middle of the night and began to decrease toward dawn. Between 70% and 84% of biosonar clicks were detected at night. At present it is not clear why some of the known deep diving species, such as sperm whales and beaked whales, concentrate their foraging efforts at night.


Assuntos
Acústica/instrumentação , Cetáceos/fisiologia , Ritmo Circadiano , Mergulho , Ecolocação , Monitoramento Ambiental/instrumentação , Comportamento Alimentar , Transdutores , Vocalização Animal , Algoritmos , Animais , Desenho de Equipamento , Havaí , Oceanos e Mares , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Fatores de Tempo
4.
J Acoust Soc Am ; 129(6): 4055-61, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21682426

RESUMO

An algorithm is presented for the detection of frequency contour sounds-whistles of dolphins and many other odontocetes, moans of baleen whales, chirps of birds, and numerous other animal and non-animal sounds. The algorithm works by tracking spectral peaks over time, grouping together peaks in successive time slices in a spectrogram if the peaks are sufficiently near in frequency and form a smooth contour over time. The algorithm has nine parameters, including the ones needed for spectrogram calculation and normalization. Finding optimal values for all of these parameters simultaneously requires a search of parameter space, and a grid search technique is described. The frequency contour detection method and parameter optimization technique are applied to the problem of detecting "boing" sounds of minke whales from near Hawaii. The test data set contained many humpback whale sounds in the frequency range of interest. Detection performance is quantified, and the method is found to work well at detecting boings, with a false-detection rate of 3% for the target missed-call rate of 25%. It has also worked well anecdotally for other marine and some terrestrial species, and could be applied to any species that produces a frequency contour, or to non-animal sounds as well.


Assuntos
Algoritmos , Baleia Anã/fisiologia , Processamento de Sinais Assistido por Computador , Vocalização Animal , Animais , Jubarte/fisiologia , Oceanos e Mares , Reprodutibilidade dos Testes , Espectrografia do Som , Especificidade da Espécie , Fatores de Tempo
5.
J Acoust Soc Am ; 129(2): 662-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21361425

RESUMO

Passive acoustic detection is being increasingly used to monitor visually cryptic cetaceans such as Blainville's beaked whales (Mesoplodon densirostris) that may be especially sensitive to underwater sound. The efficacy of passive acoustic detection is traditionally characterized by the probability of detecting the animal's sound emissions as a function of signal-to-noise ratio. The probability of detection can be predicted using accepted, but not necessarily accurate, models of the underwater acoustic environment. Recent field studies combining far-field hydrophone arrays with on-animal acoustic recording tags have yielded the location and time of each sound emission from tagged animals, enabling in-situ measurements of the probability of detection. However, tagging studies can only take place in calm seas and so do not reflect the full range of ambient noise conditions under which passive acoustic detection may be used. Increased surface-generated noise from wind and wave interaction degrades the signal-to-noise ratio of animal sound receptions at a given distance leading to a reduction in probability of detection. This paper presents a case study simulating the effect of increasing ambient noise on detection of M. densirostris foraging clicks recorded from a tagged whale swimming in the vicinity of a deep-water, bottom-mounted hydrophone array.


Assuntos
Ruído/efeitos adversos , Vocalização Animal , Baleias/fisiologia , Acústica/instrumentação , Animais , Simulação por Computador , Monitoramento Ambiental/instrumentação , Comportamento Alimentar , Feminino , Análise de Fourier , Masculino , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Natação , Transdutores
6.
R Soc Open Sci ; 4(8): 170629, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28879004

RESUMO

Cuvier's beaked whales (Ziphius cavirostris) have stranded in association with mid-frequency active sonar (MFAS) use, and though the causative mechanism linking these events remains unclear, it is believed to be behaviourally mediated. To determine whether MFAS use was associated with behavioural changes in this species, satellite tags were used to record the diving and movements of 16 Cuvier's beaked whales for up to 88 days in a region of frequent MFAS training off the coast of Southern California. Tag data were combined with summarized records of concurrent bouts of high-power, surface-ship and mid-power, helicopter-deployed MFAS use, along with other potential covariates, in generalized additive mixed-effects models. Deep dives, shallow dives and surface intervals tended to become longer during MFAS use, with some variation associated with the total amount of overlapping MFAS during the behaviour. These changes in dives and surface intervals contributed to a longer interval between deep dives, a proxy for foraging disruption in this species. Most responses intensified with proximity and were more pronounced during mid-power than high-power MFAS use at comparable distances within approximately 50 km, despite the significantly lower source level of mid-power MFAS. However, distance-mediated responses to high-power MFAS, and increased deep dive intervals during mid-power MFAS, were evident up to approximately 100 km away.

7.
PLoS One ; 9(1): e85064, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465477

RESUMO

There is increasing concern about the potential effects of noise pollution on marine life in the world's oceans. For marine mammals, anthropogenic sounds may cause behavioral disruption, and this can be quantified using a risk function that relates sound exposure to a measured behavioral response. Beaked whales are a taxon of deep diving whales that may be particularly susceptible to naval sonar as the species has been associated with sonar-related mass stranding events. Here we derive the first empirical risk function for Blainville's beaked whales (Mesoplodon densirostris) by combining in situ data from passive acoustic monitoring of animal vocalizations and navy sonar operations with precise ship tracks and sound field modeling. The hydrophone array at the Atlantic Undersea Test and Evaluation Center, Bahamas, was used to locate vocalizing groups of Blainville's beaked whales and identify sonar transmissions before, during, and after Mid-Frequency Active (MFA) sonar operations. Sonar transmission times and source levels were combined with ship tracks using a sound propagation model to estimate the received level (RL) at each hydrophone. A generalized additive model was fitted to data to model the presence or absence of the start of foraging dives in 30-minute periods as a function of the corresponding sonar RL at the hydrophone closest to the center of each group. This model was then used to construct a risk function that can be used to estimate the probability of a behavioral change (cessation of foraging) the individual members of a Blainville's beaked whale population might experience as a function of sonar RL. The function predicts a 0.5 probability of disturbance at a RL of 150 dBrms re µPa (CI: 144 to 155) This is 15dB lower than the level used historically by the US Navy in their risk assessments but 10 dB higher than the current 140 dB step-function.


Assuntos
Modelos Estatísticos , Som/efeitos adversos , Vocalização Animal/efeitos da radiação , Baleias/fisiologia , Animais , Oceano Atlântico , Bahamas , Mergulho/fisiologia , Feminino , Risco , Ultrassom , Vocalização Animal/fisiologia
8.
PLoS One ; 6(3): e17009, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21423729

RESUMO

Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2-3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2-3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance.


Assuntos
Acústica , Simulação por Computador , Militares , Baleias/fisiologia , Animais , Recursos Audiovisuais , Percepção Auditiva/fisiologia , Mergulho/fisiologia , Modelos Biológicos , Comunicações Via Satélite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA