Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cochrane Database Syst Rev ; 9: CD009551, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31478559

RESUMO

BACKGROUND: This is an update of the original review published in the Cochrane Database of Systematic Reviews Issue 10, 2015.Invasive aspergillosis (IA) is the most common life-threatening opportunistic invasive mould infection in immunocompromised people. Early diagnosis of IA and prompt administration of appropriate antifungal treatment are critical to the survival of people with IA. Antifungal drugs can be given as prophylaxis or empirical therapy, instigated on the basis of a diagnostic strategy (the pre-emptive approach) or for treating established disease. Consequently, there is an urgent need for research into both new diagnostic tools and drug treatment strategies. Increasingly, newer methods such as polymerase chain reaction (PCR) to detect fungal nucleic acids are being investigated. OBJECTIVES: To provide an overall summary of the diagnostic accuracy of PCR-based tests on blood specimens for the diagnosis of IA in immunocompromised people. SEARCH METHODS: We searched MEDLINE (1946 to June 2015) and Embase (1980 to June 2015). We also searched LILACS, DARE, Health Technology Assessment, Web of Science and Scopus to June 2015. We checked the reference lists of all the studies identified by the above methods and contacted relevant authors and researchers in the field. For this review update we updated electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 3) in the Cochrane Library; MEDLINE via Ovid (June 2015 to March week 2 2018); and Embase via Ovid (June 2015 to 2018 week 12). SELECTION CRITERIA: We included studies that: i) compared the results of blood PCR tests with the reference standard published by the European Organisation for Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG); ii) reported data on false-positive, true-positive, false-negative and true-negative results of the diagnostic tests under investigation separately; and iii) evaluated the test(s) prospectively in cohorts of people from a relevant clinical population, defined as a group of individuals at high risk for invasive aspergillosis. Case-control and retrospective studies were excluded from the analysis. DATA COLLECTION AND ANALYSIS: Authors independently assessed quality and extracted data. For PCR assays, we evaluated the requirement for either one or two consecutive samples to be positive for diagnostic accuracy. We investigated heterogeneity by subgroup analyses. We plotted estimates of sensitivity and specificity from each study in receiver operating characteristics (ROC) space and constructed forest plots for visual examination of variation in test accuracy. We performed meta-analyses using the bivariate model to produce summary estimates of sensitivity and specificity. MAIN RESULTS: We included 29 primary studies (18 from the original review and 11 from this update), corresponding to 34 data sets, published between 2000 and 2018 in the meta-analyses, with a mean prevalence of proven or probable IA of 16.3 (median prevalence 11.1% , range 2.5% to 57.1%). Most patients had received chemotherapy for haematological malignancy or had undergone hematopoietic stem cell transplantation. Several PCR techniques were used among the included studies. The sensitivity and specificity of PCR for the diagnosis of IA varied according to the interpretative criteria used to define a test as positive. The summary estimates of sensitivity and specificity were 79.2% (95% confidence interval (CI) 71.0 to 85.5) and 79.6% (95% CI 69.9 to 86.6) for a single positive test result, and 59.6% (95% CI 40.7 to 76.0) and 95.1% (95% CI 87.0 to 98.2) for two consecutive positive test results. AUTHORS' CONCLUSIONS: PCR shows moderate diagnostic accuracy when used as screening tests for IA in high-risk patient groups. Importantly the sensitivity of the test confers a high negative predictive value (NPV) such that a negative test allows the diagnosis to be excluded. Consecutive positives show good specificity in diagnosis of IA and could be used to trigger radiological and other investigations or for pre-emptive therapy in the absence of specific radiological signs when the clinical suspicion of infection is high. When a single PCR positive test is used as the diagnostic criterion for IA in a population of 100 people with a disease prevalence of 16.3% (overall mean prevalence), three people with IA would be missed (sensitivity 79.2%, 20.8% false negatives), and 17 people would be unnecessarily treated or referred for further tests (specificity of 79.6%, 21.4% false positives). If we use the two positive test requirement in a population with the same disease prevalence, it would mean that nine IA people would be missed (sensitivity 59.6%, 40.4% false negatives) and four people would be unnecessarily treated or referred for further tests (specificity of 95.1%, 4.9% false positives). Like galactomannan, PCR has good NPV for excluding disease, but the low prevalence of disease limits the ability to rule in a diagnosis. As these biomarkers detect different markers of disease, combining them is likely to prove more useful.


Assuntos
Aspergilose/sangue , Aspergilose/diagnóstico , Hospedeiro Imunocomprometido , Infecções Oportunistas , Reação em Cadeia da Polimerase/métodos , Estudos de Casos e Controles , Humanos , Infecções Oportunistas/sangue , Infecções Oportunistas/diagnóstico , Valor Preditivo dos Testes , Sensibilidade e Especificidade
2.
PLoS Pathog ; 7(6): e1002076, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21738466

RESUMO

Clostridium difficile is the etiological agent of antibiotic-associated diarrhoea (AAD) and pseudomembranous colitis in humans. The role of the surface layer proteins (SLPs) in this disease has not yet been fully explored. The aim of this study was to investigate a role for SLPs in the recognition of C. difficile and the subsequent activation of the immune system. Bone marrow derived dendritic cells (DCs) exposed to SLPs were assessed for production of inflammatory cytokines, expression of cell surface markers and their ability to generate T helper (Th) cell responses. DCs isolated from C3H/HeN and C3H/HeJ mice were used in order to examine whether SLPs are recognised by TLR4. The role of TLR4 in infection was examined in TLR4-deficient mice. SLPs induced maturation of DCs characterised by production of IL-12, TNFα and IL-10 and expression of MHC class II, CD40, CD80 and CD86. Furthermore, SLP-activated DCs generated Th cells producing IFNγ and IL-17. SLPs were unable to activate DCs isolated from TLR4-mutant C3H/HeJ mice and failed to induce a subsequent Th cell response. TLR4⁻/⁻ and Myd88⁻/⁻, but not TRIF⁻/⁻ mice were more susceptible than wild-type mice to C. difficile infection. Furthermore, SLPs activated NFκB, but not IRF3, downstream of TLR4. Our results indicate that SLPs isolated from C. difficile can activate innate and adaptive immunity and that these effects are mediated by TLR4, with TLR4 having a functional role in experimental C. difficile infection. This suggests an important role for SLPs in the recognition of C. difficile by the immune system.


Assuntos
Clostridioides difficile/imunologia , Enterocolite Pseudomembranosa/metabolismo , Glicoproteínas de Membrana/imunologia , Receptor 4 Toll-Like/metabolismo , Animais , Antígenos de Superfície/biossíntese , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Enterocolite Pseudomembranosa/imunologia , Enterocolite Pseudomembranosa/microbiologia , Antígenos de Histocompatibilidade Classe II/biossíntese , Interleucinas/biossíntese , Camundongos , Camundongos Knockout , Transdução de Sinais/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
3.
Front Microbiol ; 3: 413, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23264771

RESUMO

Invasive aspergillosis is a significant threat to health and is a major cause of mortality in immunocompromised individuals. Understanding the interaction between the fungus and the immune system is important in determining how the immunocompetent host remains disease free. Several studies examining the direct interaction between Aspergillus fumigatus and purified innate immune cells have been conducted to measure the responses of both the host cells and the pathogen. It has been revealed that innate immune cells have different modes of action ranging from effective fungal killing by neutrophils to the less aggressive response of dendritic cells. Natural killer cells do not phagocytose the fungus unlike the other innate immune cells mentioned but appear to mediate their antifungal effect through the release of gamma interferon. Transcriptional analysis of A. fumigatus interacting with these cells has indicated that it can adapt to the harsh microenvironment of the phagosome and produces toxins, ribotoxin and gliotoxin, that can induce cell death in the majority of innate immune cells. These data point toward potential novel antifungal treatments including the use of innate immune cells as antifungal vaccines.

4.
PLoS One ; 6(1): e16016, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21264256

RESUMO

Dendritic cells (DC) are the most important antigen presenting cells and play a pivotal role in host immunity to infectious agents by acting as a bridge between the innate and adaptive immune systems. Monocyte-derived immature DCs (iDC) were infected with viable resting conidia of Aspergillus fumigatus (Af293) for 12 hours at an MOI of 5; cells were sampled every three hours. RNA was extracted from both organisms at each time point and hybridised to microarrays. iDC cell death increased at 6 h in the presence of A. fumigatus which coincided with fungal germ tube emergence; >80% of conidia were associated with iDC. Over the time course A. fumigatus differentially regulated 210 genes, FunCat analysis indicated significant up-regulation of genes involved in fermentation, drug transport, pathogenesis and response to oxidative stress. Genes related to cytotoxicity were differentially regulated but the gliotoxin biosynthesis genes were down regulated over the time course, while Aspf1 was up-regulated at 9 h and 12 h. There was an up-regulation of genes in the subtelomeric regions of the genome as the interaction progressed. The genes up-regulated by iDC in the presence of A. fumigatus indicated that they were producing a pro-inflammatory response which was consistent with previous transcriptome studies of iDC interacting with A. fumigatus germ tubes. This study shows that A. fumigatus adapts to phagocytosis by iDCs by utilising genes that allow it to survive the interaction rather than just up-regulation of specific virulence genes.


Assuntos
Aspergillus fumigatus/genética , Células Dendríticas/microbiologia , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/genética , Células Cultivadas , Humanos , Evasão da Resposta Imune/genética , Inflamação/genética , Fagocitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA