Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 50(6): 1636-1650, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36651951

RESUMO

Pharmacokinetic modelling with arterial sampling is the gold standard for analysing dynamic PET data of the brain. However, the invasive character of arterial sampling prevents its widespread clinical application. Several methods have been developed to avoid arterial sampling, in particular reference region methods. Unfortunately, for some tracers or diseases, no suitable reference region can be defined. For these cases, other potentially non-invasive approaches have been proposed: (1) a population based input function (PBIF), (2) an image derived input function (IDIF), or (3) simultaneous estimation of the input function (SIME). This systematic review aims to assess the correspondence of these non-invasive methods with the gold standard. Studies comparing non-invasive pharmacokinetic modelling methods with the current gold standard methods using an input function derived from arterial blood samples were retrieved from PubMed/MEDLINE (until December 2021). Correlation measurements were extracted from the studies. The search yielded 30 studies that correlated outcome parameters (VT, DVR, or BPND for reversible tracers; Ki or CMRglu for irreversible tracers) from a potentially non-invasive method with those obtained from modelling using an arterial input function. Some studies provided similar results for PBIF, IDIF, and SIME-based methods as for modelling with an arterial input function (R2 = 0.59-1.00, R2 = 0.71-1.00, R2 = 0.56-0.96, respectively), if the non-invasive input curve was calibrated with arterial blood samples. Even when the non-invasive input curve was calibrated with venous blood samples or when no calibration was applied, moderate to good correlations were reported, especially for the IDIF and SIME (R2 = 0.71-1.00 and R2 = 0.36-0.96, respectively). Overall, this systematic review illustrates that non-invasive methods to generate an input function are still in their infancy. Yet, IDIF and SIME performed well, not only with arterial blood calibration, but also with venous or no blood calibration, especially for some tracers without plasma metabolites, which would potentially make these methods better suited for clinical application. However, these methods should still be properly validated for each individual tracer and application before implementation.


Assuntos
Artérias , Encéfalo , Humanos , Artérias/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Cinética , Tomografia por Emissão de Pósitrons/métodos , Veias
2.
Eur J Nucl Med Mol Imaging ; 50(13): 3917-3927, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37552369

RESUMO

INTRODUCTION: P-glycoprotein (P-gp) is one of the most studied efflux transporters at the blood-brain barrier. It plays an important role in brain homeostasis by protecting the brain from a variety of endogenous and exogeneous substances. Changes in P-gp function are associated both with the onset of neuropsychiatric diseases, including Alzheimer's disease and Parkinson's disease, and with drug-resistance, for example in treatment-resistant depression. The most widely used approach to measure P-gp function in vivo is (R)-[11C]verapamil PET. (R)-[11C]verapamil is, however, an avid P-gp substrate, which complicates the use of this tracer to measure an increase in P-gp function as its baseline uptake is already very low. [18F]MC225 was developed to measure both increases and decreases in P-gp function. AIM: The aim of this study was (1) to identify the pharmacokinetic model that best describes [18F]MC225 kinetics in the human brain and (2) to determine test-retest variability. METHODS: Five (2 male, 3 female) of fourteen healthy subjects (8 male, 6 female, age 67 ± 5 years) were scanned twice (injected dose 201 ± 47 MBq) with a minimum interval of 2 weeks between scans. Each scanning session consisted of a 60-min dynamic [18F]MC225 scan with continuous arterial sampling. Whole brain grey matter data were fitted to a single tissue compartment model, and to reversible and irreversible two tissue-compartment models to obtain various outcome parameters (in particular the volume of distribution (VT), Ki, and the rate constants K1 and k2). In addition, a reversible two-tissue compartment model with fixed k3/k4 was included. The preferred model was selected based on the weighted Akaike Information Criterion (AIC) score. Test-retest variability (TRTV) was determined to assess reproducibility. RESULTS: Sixty minutes post-injection, the parent fraction was 63.8 ± 4.0%. The reversible two tissue compartment model corrected for plasma metabolites with an estimated blood volume (VB) showed the highest AIC weight score of 34.3 ± 17.6%. The TRVT of the VT for [18F]MC225 PET scans was 28.3 ± 20.4% for the whole brain grey matter region using this preferred model. CONCLUSION: [18F]MC225 VT, derived using a reversible two-tissue compartment model, is the preferred parameter to describe P-gp function in the human BBB. This outcome parameter has an average test-retest variability of 28%. TRIAL REGISTRATION: EudraCT 2020-001564-28 . Registered 25 May 2020.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Tomografia por Emissão de Pósitrons , Verapamil , Compostos Radiofarmacêuticos/farmacocinética
4.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139840

RESUMO

Adenosine triphosphate binding cassette (ABC) transporters are a broad family of membrane protein complexes that use energy to transport molecules across cells and/or intracellular organelle lipid membranes. Many drugs used to treat cardiac diseases have an affinity for these transporters. Among others, P-glycoprotein (P-gp) plays an essential role in regulating drug concentrations that reach cardiac tissue and therefore contribute to cardiotoxicity. As a molecular imaging modality, positron emission tomography (PET) has emerged as a viable technique to investigate the function of P-gp in organs and tissues. Using PET imaging to evaluate cardiac P-gp function provides new insights for drug development and improves the precise use of medications. Nevertheless, information in this field is limited. In this review, we aim to examine the current applications of ABC transporter PET imaging and its tracers in the heart, with a specific emphasis on P-gp. Furthermore, the opportunities and challenges in this novel field will be discussed.

5.
J Control Release ; 357: 591-605, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031742

RESUMO

The oral route is the most widely used and preferable way of drug administration. Several pharmacokinetic processes play a role in the distribution of administered drugs. Therefore, accurate quantification of absorption, distribution, metabolism, excretion, and characterisation of drug kinetics after oral administration is extremely important for developing new human drugs. In vivo methods, such as gamma-scintigraphy, magnetic resonance imaging (MRI), and positron emission tomography (PET), have been used to analyse gastrointestinal tract (GIT) absorption behaviour. This scoping review provides an overview of PET studies that used oral tracer administration. A systematic literature search was performed using PubMed, EMBASE, Scopus, Science Direct, and Web of Science databases. Extensive variation between these studies was seen concerning acquisition protocols, quantification methods, and pharmacokinetic outcome parameters. Studies in humans indicate that it takes 10 to 30 min for the tracer to be in the intestine and about 100 min to reach its maximum concentration in the brain. In rodent studies, different pharmacokinetic parameters for the brain, blood, and GIT were estimated, showing the potential of PET to measure the absorption and distribution of drugs and pharmaceuticals non-invasively. Finally, regarding radiation protection, oral administration has a higher absorbed dose in GIT and, consequently, a higher effective dose. However, with the recent introduction of Long Axial Field of View (LAFOV) PET scanners, it is possible to reduce the administered dose, making oral administration feasible for routine clinical studies.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Humanos , Encéfalo/diagnóstico por imagem , Administração Oral , Trato Gastrointestinal/diagnóstico por imagem
6.
World Neurosurg ; 168: e67-e75, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36126890

RESUMO

OBJECTIVE: Hemangioblastomas in the central nervous system are the most common manifestation of von Hippel-Lindau (VHL) disease. Because the growth rate of hemangioblastomas is unpredictable, regular follow-up is mandatory, focusing on clinical symptoms and imaging of the central nervous system. However, clinical symptoms may be subtle and nonspecific, and data about the relationship between the radiologic findings and clinical symptoms are sparse. This study aims to evaluate if and how findings of magnetic resonance imaging (MRI) regarding spinal hemangioblastomas are associated with symptoms of VHL disease, with special attention to peritumoral edema and spinal cysts. METHODS: Serial spinal MRI scans of 43 genetically or clinically established VHL patients with at least 2 years of follow-up were reevaluated to examine the volume, growth rate, and location of spinal hemangioblastomas and the presence, size, and growth rate of peritumoral edema and cysts. Findings were compared with clinical symptoms using the Fisher exact test. RESULTS: We observed a total of 77 spinal hemangioblastomas in 28 patients. Eight of the 28 patients showed peritumoral edema and spinal cysts, and 1 patient showed peritumoral edema without cyst formation; 6 of these 9 patients showed clinical symptoms. Both peritumoral edema and spinal cysts were associated with clinical symptoms (P = 0.023 and P = 0.011, respectively). CONCLUSIONS: The presence of peritumoral edema and/or spinal cysts shown on MRI in VHL patients with spinal hemangioblastomas is associated with symptoms in more than half of the patients and may alert the clinician to intensify clinical and radiologic surveillance.


Assuntos
Cistos , Hemangioblastoma , Neoplasias da Medula Espinal , Doença de von Hippel-Lindau , Humanos , Hemangioblastoma/diagnóstico por imagem , Hemangioblastoma/cirurgia , Hemangioblastoma/complicações , Doença de von Hippel-Lindau/complicações , Doença de von Hippel-Lindau/diagnóstico por imagem , Seguimentos , Neoplasias da Medula Espinal/diagnóstico , Cistos/complicações , Edema
7.
J Control Release ; 347: 500-507, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35588934

RESUMO

The Blood-Brain Barrier P-glycoprotein (P-gp) function can be altered in several neurodegenerative diseases and due to the administration of different drugs which may cause alterations in drug concentrations and consequently lead to a reduced effectiveness or increased side-effects. The novel PET radiotracer [18F]MC225 is a weak P-gp substrate that may show higher sensitivity to detect small changes in P-gp function than previously developed radiotracers. This study explores the sensitivity of [18F]MC225 to measure the dose-dependent effect of P-gp inhibitor tariquidar. Twenty-three rats were intravenously injected with different doses of tariquidar ranging from 0.75 to 12 mg/kg, 30-min before the dynamic [18F]MC225-PET acquisition with arterial sampling. Tissue and blood data were fitted to a 1-Tissue-Compartment-Model to obtain influx constant K1 and distribution volume VT, which allow the estimation of P-gp function. ANOVA and post-hoc analyses of K1 values showed significant differences between controls and groups with tariquidar doses >3 mg/kg; while applying VT the analyses showed significant differences between controls and groups with tariquidar doses >6 mg/kg. Dose-response curves were fitted using different models. The four-parameter logistic sigmoidal curve provided the best fit for K1 and VT data. Half-maximal inhibitory doses (ID50) were 2.23 mg/kg (95%CI: 1.669-2.783) and 2.93 mg/kg (95%CI: 1.135-3.651), calculated with K1 or VT values respectively. According to the dose-response fit, differences in [18F]MC225-K1 values could be detected at tariquidar doses ranging from 1.37 to 3.25 mg/kg. Our findings showed that small changes in the P-gp function, caused by low doses of tariquidar, could be detected by [18F]MC225-K1 values, which confirms the high sensitivity of the radiotracer. The results suggest that [18F]MC225 may allow the quantification of moderate P-gp impairments, which may allow the detection of P-gp dysfunctions at the early stages of a disease and potential transporter-mediated drug-drug interactions.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ratos
8.
Ann Nucl Med ; 35(11): 1240-1252, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34368924

RESUMO

OBJECTIVE: 5-(1-(2-[18F]fluoroethoxy))-[3-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-propyl]-5,6,7,8-tetrahydronaphthalen ([18F]MC225) is a selective substrate for P-glycoprotein (P-gp), possessing suitable properties for measuring overexpression of P-gp in the brain. This is the first-in-human study to examine safety, radiation dosimetry and P-gp function at the blood-brain barrier (BBB) of [18F]MC225 in healthy subjects. METHODS: [18F]MC225 biodistribution and dosimetry were determined in 3 healthy male subjects, using serial 2 h and intermittent 4 and 6 h whole-body PET scans acquired after [18F]MC225 injection. Dynamic [18F]MC225 brain PET (90 min) was obtained in 5 healthy male subjects. Arterial blood was sampled at various time intervals during scanning and the fraction of unchanged [18F]MC225 in plasma was determined. T1-weighted MRI was performed for anatomical coregistration. Total distribution volume (VT) was estimated using 1- and 2-tissue-compartment models (1-TCM and 2-TCM, respectively). VT was also estimated using the Logan graphical method (Logan plot) (t* = 20 min). Surrogate parameters without blood sampling (area-under the curve [AUC] of regional time-activity curves [TACs] and negative slope of calculated TACs) were compared with the VT values. RESULTS: No serious adverse events occurred throughout the study period. Although biodistribution implied hepatobiliary excretion, secretion of radioactivity from liver to small intestine through the gallbladder was very slow. Total renal excreted radioactivity recovered during 6 h after injection was < 2%ID. Absorbed dose was the highest in the pancreas (mean ± SD, 203 ± 45 µGy/MBq) followed by the liver (83 ± 11 µGy/MBq). Mean effective dose with and without urination was 17 ± 1 µSv/MBq. [18F]MC225 readily entered the brain, distributing homogeneously in grey matter regions. 2-TCM provided lower Akaike information criterion scores than did 1-TCM. VT estimated by Logan plot was well correlated with that of 2-TCM (r2 > 0.9). AUCs of TACs were positively correlated with VT (2-TCM) values (r2: AUC0-60 min = 0.61, AUC0-30 min = 0.62, AUC30-60 min = 0.59, p < 0.0001). Negative slope of SUV TACs was negatively correlated with VT (2-TCM) values (r2 = 0.53, p < 0.0001). CONCLUSIONS: This initial evaluation indicated that [18F]MC225 is a suitable and safe PET tracer for measuring P-gp function at the BBB.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA