Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 137: 106616, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37247564

RESUMO

Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1) is a nuclear multi-domain protein overexpressed in numerous human cancer types. We previously disclosed the anthraquinone derivative UM63 that inhibits UHRF1-SRA domain base-flipping activity, although having DNA intercalating properties. Herein, based on the UM63 structure, new UHRF1-SRA inhibitors were identified through a multidisciplinary approach, combining molecular modelling, biophysical assays, molecular and cell biology experiments. We identified AMSA2 and MPB7, that inhibit UHRF1-SRA mediated base flipping at low micromolar concentrations, but do not intercalate into DNA, which is a key advantage over UM63. These molecules prevent UHRF1/DNMT1 interaction at replication forks and decrease the overall DNA methylation in cells. Moreover, both compounds specifically induce cell death in numerous cancer cell lines, displaying marginal effect on non-cancer cells, as they preferentially affect cells with high level of UHRF1. Overall, these two compounds are promising leads for the development of anti-cancer drugs targeting UHRF1.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Neoplasias , Humanos , Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Metilação de DNA , DNA/química , Modelos Moleculares , Neoplasias/genética
2.
Molecules ; 28(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37630248

RESUMO

Cancer is one of the leading causes of death worldwide, and its incidence and mortality are increasing each year. Improved therapeutic strategies against cancer have progressed, but remain insufficient to invert this trend. Along with several other risk factors, abnormal genetic and epigenetic regulations play a critical role in the initiation of cellular transformation, as well as tumorigenesis. The epigenetic regulator UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is a multidomain protein with oncogenic abilities overexpressed in most cancers. Through the coordination of its multiple domains and other epigenetic key players, UHRF1 regulates DNA methylation and histone modifications. This well-coordinated dialogue leads to the silencing of tumor-suppressor genes (TSGs) and facilitates tumor cells' resistance toward anticancer drugs, ultimately promoting apoptosis escape and uncontrolled proliferation. Several studies have shown that the downregulation of UHRF1 with natural compounds in tumor cells induces the reactivation of various TSGs, inhibits cell growth, and promotes apoptosis. In this review, we discuss the underlying mechanisms and the potential of various natural and synthetic compounds that can inhibit/minimize UHRF1's oncogenic activities and/or its expression.


Assuntos
Carcinogênese , Transformação Celular Neoplásica , Humanos , Apoptose , Ciclo Celular , Epigênese Genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Ubiquitina-Proteína Ligases/genética
3.
Chemistry ; 25(58): 13363-13375, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31322780

RESUMO

During DNA replication, ubiquitin-like, containing PHD and RING fingers domains 1 (UHRF1) plays key roles in the inheritance of methylation patterns to daughter strands by recognizing through its SET and RING-associated domain (SRA) the methylated CpGs and recruiting DNA methyltransferase 1 (DNMT1). Herein, our goal is to identify UHRF1 inhibitors targeting the 5'-methylcytosine (5mC) binding pocket of the SRA domain to prevent the recognition and flipping of 5mC and determine the molecular and cellular consequences of this inhibition. For this, we used a multidisciplinary strategy combining virtual screening and molecular modeling with biophysical assays in solution and cells. We identified an anthraquinone compound able to bind to the 5mC binding pocket and inhibit the base-flipping process in the low micromolar range. We also showed in cells that this hit impaired the UHRF1/DNMT1 interaction and decreased the overall methylation of DNA, highlighting the critical role of base flipping for DNMT1 recruitment and providing the first proof of concept of the druggability of the 5mC binding pocket. The selected anthraquinone appears thus as a key tool to investigate the role of UHRF1 in the inheritance of methylation patterns, as well as a starting point for hit-to-lead optimizations.


Assuntos
Antraquinonas/química , Proteínas Estimuladoras de Ligação a CCAAT/antagonistas & inibidores , Inibidores Enzimáticos/química , 5-Metilcitosina/química , Sítios de Ligação , DNA (Citosina-5-)-Metiltransferase 1/química , Avaliação Pré-Clínica de Medicamentos/métodos , Células HeLa , Humanos , Cinética , Metilação , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Transfecção/métodos , Ubiquitina-Proteína Ligases
4.
J Am Chem Soc ; 139(6): 2520-2528, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28112929

RESUMO

DNA methylation patterns, which are critical for gene expression, are replicated by DNA methyltransferase 1 (DNMT1) and ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) proteins. This replication is initiated by the recognition of hemimethylated CpG sites and further flipping of methylated cytosines (mC) by the Set and Ring Associated (SRA) domain of UHRF1. Although crystallography has shed light on the mechanism of mC flipping by SRA, tools are required to monitor in real time how SRA reads DNA and flips the modified nucleobase. To accomplish this aim, we have utilized two distinct fluorescent nucleobase surrogates, 2-thienyl-3-hydroxychromone nucleoside (3HCnt) and thienoguanosine (thG), incorporated at different positions into hemimethylated (HM) and nonmethylated (NM) DNA duplexes. Large fluorescence changes were associated with mC flipping in HM duplexes, showing the outstanding sensitivity of both nucleobase surrogates to the small structural changes accompanying base flipping. Importantly, the nucleobase surrogates marginally affected the structure of the duplex and its affinity for SRA at positions where they were responsive to base flipping, illustrating their promise as nonperturbing probes for monitoring such events. Stopped-flow studies using these two distinct tools revealed the fast kinetics of SRA binding and sliding to NM duplexes, consistent with its reader role. In contrast, the kinetics of mC flipping was found to be much slower in HM duplexes, substantially increasing the lifetime of CpG-bound UHRF1, and thus the probability of recruiting DNMT1 to faithfully duplicate the DNA methylation profile. The fluorescence-based approach using these two different fluorescent nucleoside surrogates advances the mechanistic understanding of the UHRF1/DNMT1 tandem and the development of assays for the identification of base flipping inhibitors.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Citosina/metabolismo , DNA/metabolismo , Termodinâmica , Proteínas Estimuladoras de Ligação a CCAAT/química , Citosina/química , DNA/química , Metilação de DNA , Replicação do DNA , Fluorescência , Humanos , Cinética , Estrutura Molecular , Ubiquitina-Proteína Ligases
5.
Tumour Biol ; 35(8): 7877-85, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24828012

RESUMO

Several studies have reported that plant-derived natural products have cancer chemopreventive and chemotherapeutic properties. The aim of the present study was to determine the antiproliferative and pro-apoptotic potential of Limoniastrum guyonianum aqueous gall extract (G extract) on human colorectal cancer BE cell line and, if so, to characterize the mechanism involved. The G extract-induced growth inhibitory effect was associated with an arrest of cell cycle progression in G2/M phase as shown by the cell phase distribution. In addition, G extract promoted in a concentration-dependent manner these cells towards apoptosis as indicated by the presence of cleaved poly(ADP-ribose) polymerase (PARP). In order to characterize the mechanism involved in the antiproliferative and pro-apoptotic signaling pathway activated by G extract, calpain activity and the expression of the cell cycle inhibitor p16(INK4A) were determined. The present findings indicated that G extract exhibited significant inhibitory activity against calpain and caused a marked and concentration-dependent upregulation of p16(INK4A). These effects could be ascribed to the presence of condensed tannins and polyphenols such as epicatechin and epigallocatechin gallate in G extract.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Calpaína/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Extratos Vegetais/farmacologia , Plumbaginaceae , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Dipeptídeos/farmacologia , Humanos , Extratos Vegetais/análise , Plumbaginaceae/química , Poli(ADP-Ribose) Polimerases/metabolismo
6.
Nutr Cancer ; 66(7): 1220-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25207720

RESUMO

In this study, we have investigated the effects of luteolin on colorectal cancer cells. Our results demonstrate that luteolin is able to induce cytotoxicity and cell cycle perturbation in a dose-dependent manner. By triggering poly(ADP-ribose) polymerase (PARP) cleavage, this molecule is able to induce the apoptosis of BE colorectal cancer cells. We have also studied the potential involvement of calpains in the proapoptotic effects of luteolin. Our data show that luteolin exhibits moderate inhibitory activity against calpain. Thus, treatment of these cells with both luteolin and the calpain inhibitor MDL 28170 causes an increase in the luteolin-induced apoptosis as proved by the enhancement of 89- and 26-kDa PARP fragments. This effect is concomitant with the downregulation of the DNA methyltransferase 1 (DNMT1) expression and the epigenetic integrator ubiquitin-like containing PHD Finger 1 (UHRF1). As a result, luteolin induces an upregulation of a tumor suppressor gene: p16(INK4A). This study further proposes that calpain might be involved in the epigenetic code inheritance by regulating the epigenetic integrator UHRF1. We conclude from these results that targeting calpain, UHRF1, and DNMT1 using luteolin could be an interesting way to prevent and/or treat colorectal cancers.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Calpaína/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação para Baixo , Luteolina/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Calpaína/genética , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Neoplasias Colorretais/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , Dipeptídeos/farmacologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Ubiquitina-Proteína Ligases , Regulação para Cima
7.
Int J Biochem Cell Biol ; 171: 106582, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649007

RESUMO

DNA methylation is one of the most important epigenetic mark involved in many physiologic cellular processes and pathologies. During mitosis, the transmission of DNA methylation patterns from a mother to the daughter cells is ensured through the action of the Ubiquitin-like, containing PHD and RING domains, 1/DNA methyltransferase 1 (UHRF1/DNMT1) tandem. UHRF1 is involved in the silencing of many tumor suppressor genes (TSGs) via mechanisms that remain largely to be deciphered. The present study investigated the role and the regulation of UHRF1 poly-ubiquitination induced by thymoquinone, a natural anti-cancer drug, known to enhance or re-activate the expression of TSGs. We found that the auto-ubiquitination of UHRF1, induced by TQ, is mediated by reactive oxygen species, and occurs following DNA damage. We demonstrated that the poly-ubiquitinated form of UHRF1 is K63-linked and can still silence the tumor suppressor gene p16INK4A/CDKN2A. We further showed that TQ-induced auto-ubiquitination is mediated via the activity of Tip60. Since this latter is known as a nuclear receptor co-factor, we investigated if the glucocorticoid receptor (GR) might be involved in the regulation of UHRF1 ubiquitination. Activation of the GR, with dexamethasone, did not influence auto-ubiquitination of UHRF1. However, we could observe that TQ induced a K48-linked poly-ubiquitination of GR, probably involved in the proteosomal degradation pathway. Mass-spectrometry analysis of FLAG-HA-tagged UHRF1 identified UHRF1 partners involved in DNA repair and showed that TQ increased their association with UHRF1, suggesting that poly-ubiquitination of UHRF1 is involved in the DNA repair process. We propose that poly-ubiquitination of UHRF1 serves as a scaffold to recruit the DNA repair machinery at DNA damage sites.


Assuntos
Benzoquinonas , Proteínas Estimuladoras de Ligação a CCAAT , Reparo do DNA , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Ubiquitinação/efeitos dos fármacos , Benzoquinonas/farmacologia , Reparo do DNA/efeitos dos fármacos , Antineoplásicos/farmacologia , Dano ao DNA/efeitos dos fármacos
8.
Biochem Biophys Res Commun ; 430(1): 208-12, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23201574

RESUMO

Ubiquitin-like containing PHD and Ring finger 1 (UHRF1) contributes to silencing of tumor suppressor genes by recruiting DNA methyltransferase 1 (DNMT1) to their hemi-methylated promoters. Conversely, demethylation of these promoters has been ascribed to the natural anti-cancer drug, epigallocatechin-3-gallate (EGCG). The aim of the present study was to investigate whether the UHRF1/DNMT1 pair is an important target of EGCG action. Here, we show that EGCG down-regulates UHRF1 and DNMT1 expression in Jurkat cells, with subsequent up-regulation of p73 and p16(INK4A) genes. The down-regulation of UHRF1 is dependent upon the generation of reactive oxygen species by EGCG. Up-regulation of p16(INK4A) is strongly correlated with decreased promoter binding by UHRF1. UHRF1 over-expression counteracted EGCG-induced G1-arrested cells, apoptosis, and up-regulation of p16(INK4A) and p73. Mutants of the Set and Ring Associated (SRA) domain of UHRF1 were unable to down-regulate p16(INK4A) and p73, either in the presence or absence of EGCG. Our results show that down-regulation of UHRF1 is upstream to many cellular events, including G1 cell arrest, up-regulation of tumor suppressor genes and apoptosis.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Catequina/análogos & derivados , Inibidor p16 de Quinase Dependente de Ciclina/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Supressores de Tumor/efeitos dos fármacos , Proteínas Nucleares/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Supressoras de Tumor/genética , Apoptose/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/antagonistas & inibidores , Catequina/farmacologia , Ciclo Celular/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Regulação para Baixo , Humanos , Células Jurkat , Regiões Promotoras Genéticas , Proteína Tumoral p73 , Ubiquitina-Proteína Ligases , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-22771810

RESUMO

This article has been withdrawn at the request of the editors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

10.
Food Funct ; 13(1): 316-326, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34897340

RESUMO

Maritime pine bark is a rich source of polyphenolic compounds and is commonly employed as a herbal supplement worldwide. This study was designed to check the potential of maritime pine tannin extract (MPTE) in anticancer therapy and to determine the underlying mechanism of action. Our results showed that MPTE, containing procyanidin oligomers and lanostane type terpenoids, has an inhibitory effect on cancer cell proliferation through cell cycle arrest in the G2/M phase. Treatment with MPTE also induced apoptosis in a concentration-dependent manner in human cancer cell lines (HeLa and U2OS), as evidenced by the enhanced activation of caspase 3 and the cleavage of PARP along with the downregulation of the antiapoptotic protein Bcl-2. Interestingly, human non-cancerous fibroblasts are much less sensitive to MPTE, suggesting that it preferentially targets cancer cells. MPTE played a pro-oxidant role in cancer cells and promoted the expression of the p73 tumor suppressor gene in p53-deficient cells. It also downregulated the protooncogenic proteins UHRF1 and DNMT1, mediators of the DNA methylation machinery, and reduced the global methylation levels in HeLa cells. Overall, our results show that maritime pine tannin extract can play a favorable role in cancer treatment, and can be further explored by the pharmaceutical industry.


Assuntos
Antineoplásicos/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT , Epigênese Genética/efeitos dos fármacos , Pinus/química , Taninos/farmacologia , Ubiquitina-Proteína Ligases , Apoptose/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células HeLa , Humanos , Casca de Planta/química , Extratos Vegetais/farmacologia , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
Cell Mol Life Sci ; 67(6): 1005-15, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20043183

RESUMO

Catestatin, an endogenous peptide derived from bovine chromogranin A, and its active domain cateslytin display powerful antimicrobial activities. We have tested the activities of catestatin and other related peptides on the growth of Plasmodium falciparum in vitro. Catestatin inhibits growth of the chloroquine-sensitive strain of P. falciparum 3D7, exhibiting 88% inhibition at 20 microM. A similar partial inhibition of parasite growth was observed for the chloroquine-resistant strain, 7G8 (64%,) and the multidrug-resistant strain, W2 (62%). In the presence of parasite-specific lactate dehydrogenase, a specific protein-protein interaction between catestatin and plasmepsin II precursor was demonstrated. In addition, catestatin partially inhibited the parasite-specific proteases plasmepsin in vitro. A specific interaction between catestatin and plasmepsins II and IV from P. falciparum and plasmepsin IV from the three remaining species of Plasmodium known to infect man was observed, suggesting a catestatin-induced reduction in availability of nutrients for protein synthesis in the parasite.


Assuntos
Cromogranina A/farmacologia , Fragmentos de Peptídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Bovinos , Cromogranina A/síntese química , Cromogranina A/química , Relação Dose-Resposta a Droga , L-Lactato Desidrogenase/antagonistas & inibidores , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Relação Estrutura-Atividade
12.
Int J Oncol ; 59(5)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34558642

RESUMO

Tat interactive protein, 60 kDa (TIP60) is an important partner of ubiquitin­like, containing PHD and RING finger domains 1 (UHRF1), ensuring various cellular processes through its acetyltransferase activity. TIP60 is believed to play a tumor suppressive role, partly explained by its downregulated expression in a number of cancers. The aim of the present study was to investigate the role and mechanisms of action of TIP60 in the regulation of UHRF1 expression. The results revealed that TIP60 overexpression downregulated the UHRF1 and DNA methyltransferase 1 (DNMT1) expression levels. TIP60 interfered with USP7­UHRF1 association and induced the degradation of UHRF1 in an auto­ubiquitination­dependent manner. Moreover, TIP60 activated the p73­mediated apoptotic pathway. Taken together, the data of the present study suggest that the tumor suppressor role of TIP60 is mediated by its regulation to UHRF1.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Lisina Acetiltransferase 5/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Peptidase 7 Específica de Ubiquitina/química , Apoptose , Proteínas Estimuladoras de Ligação a CCAAT/química , Biologia Computacional , Células HeLa , Humanos , Proteína Tumoral p73/fisiologia , Ubiquitina-Proteína Ligases/química , Ubiquitinação
13.
Exp Parasitol ; 124(2): 190-6, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19755119

RESUMO

Congenital infection is one of the most serious settings of infection with the apicomplexan parasite Toxoplasma gondii. Ocular diseases, such as retinochoroiditis, are the most common sequels of such infection in utero. However, while numerous studies have investigated the physiopathology of acquired toxoplasmosis, congenital infection has been largely neglected so far. Here, we establish a mouse model of congenital ocular toxoplasmosis. Parasite load and ocular pathology have been followed for the first 4 weeks of life. Ocular infection developed slowly compared to cerebral infection. Even after 4 weeks, not all eyes were infected and ocular parasite load was low. Therefore, we evaluated a scheme of neonatal infection to overcome problems associated with congenital infection. Development of infection and physiopathology was similar, but at a higher, more reliable rate. In summary, we have established a valuable model of neonatal ocular toxoplasmosis, which facilitates the research of the underlying physiopathological mechanisms and new diagnostic approaches of this pathology.


Assuntos
Modelos Animais de Doenças , Toxoplasmose Ocular/congênito , Animais , Animais Recém-Nascidos , Encéfalo/parasitologia , DNA de Protozoário/análise , Olho/parasitologia , Olho/patologia , Feminino , Masculino , Camundongos , Parasitemia/parasitologia , Reação em Cadeia da Polimerase , Gravidez , Complicações Parasitárias na Gravidez/parasitologia , Organismos Livres de Patógenos Específicos , Toxoplasma/genética , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/congênito , Toxoplasmose Animal/parasitologia , Toxoplasmose Cerebral/parasitologia , Toxoplasmose Ocular/parasitologia
14.
Int J Pharm ; 587: 119690, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32738459

RESUMO

The purpose of the present study was to design nanostructured lipid carriers (NLCs) exhibiting improved mucoadhesive properties. First, an S-protected thiolated fatty acid conjugate was synthesized by amide bond formation between a primary amino group of l-cystine and palmitic acid N-hydroxysuccinimide. NLCs were prepared by nano-template engineering technique using Span 60, polysorbate 80, sucrose stearate and PEG 400 as surfactant mixture, stearic acid as solid lipid and miglyol as liquid lipid. NLCs were loaded with the model drug bergapten and decorated with the S-protected thiolated fatty acid conjugate. NLCs were characterized regarding particle size, poly-dispersity index (PDI), zeta potential, drug entrapment efficiency (EE), drug loading capacity (LC), drug release and mucoadhesive properties. Furthermore, cytotoxicity studies were performed on MDA-MB-231 cells via resazurin assay. S-Protected thiolated NLCs displayed a mean size of 115 nm, PDI of 0.3, zeta potential of -30 mV, 80% drug EE and 5% drug LC. Drug-loaded S-protected thiolated NLCs exhibited a sustained drug release and strongly enhanced mucoadhesive properties. Surface decoration with cystine substructures raised the cytotoxic potential of NLCs to a minor extent. Due to the immobilization of cystine substructures on the surface of NLCs, their mucoadhesive properties can be strongly improved.


Assuntos
Portadores de Fármacos , Nanoestruturas , Liberação Controlada de Fármacos , Lipídeos , Tamanho da Partícula
15.
Biochem Biophys Res Commun ; 390(3): 523-8, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19800870

RESUMO

Tat-interactive protein, 60kDa (Tip60) is a histone acetyltransferase with specificity toward lysine 5 of histone H2A (H2AK5) and plays multiple roles in chromatin remodeling processes. Co-immunoprecipitation experiments performed on Jurkat cells, showed that Tip60 is present in the same macro-molecular complex as UHRF1 (Ubiquitin-like containing PHD and RING domain 1), DNMT1 (DNA methyltransferase 1), and HDAC1 (histone deacetylase 1). Furthermore, immunocytochemistry experiments confirmed that Tip60 co-localizes with the UHRF1/DNMT1 complex. Although down-regulation of UHRF1 by RNA interference enhanced Tip60 expression, a significant decrease of the level of acetylated H2AK5 was observed. Consistently, we have observed that down-regulation of Tip60 and DNMT1 by RNA interference, dramatically reduced the levels of acetylated H2AK5. Altogether, these results suggest that Tip60 is a novel partner of the epigenetic integration platform interplayed by UHRF1, DNMT1 and HDAC1 involved in the epigenetic code replication.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Epigênese Genética , Histona Acetiltransferases/metabolismo , Acetilação , Proteínas Estimuladoras de Ligação a CCAAT/genética , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Técnicas de Silenciamento de Genes , Histona Acetiltransferases/genética , Histonas/metabolismo , Humanos , Imunoprecipitação , Células Jurkat , Lisina/metabolismo , Lisina Acetiltransferase 5 , Ubiquitina-Proteína Ligases
16.
Cell Microbiol ; 10(4): 908-20, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18005238

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that causes severe disease in humans. It is able to infect all nucleated mammalian cells leading to lifelong persistence of the parasite in the host. Here, we studied the effect of T. gondii infection on host cell proliferation and explored the molecular mechanisms involved in host cell cycle progression. We found that T. gondii induced G1/S transition in host cells in the presence of UHRF1, followed by G2 arrest after cyclin B1 downregulation which is probably the major cause of the arrest. Other molecules at the G2/M checkpoint including p53, p21 and Cdk1 were normally regulated. Interestingly, while parasite proliferation was normal in cells that were in the G2 phase, it was suppressed in G1-arrested cells induced by UHRF1-siRNA, indicating the importance of the G2 phase via UHRF1-induced G1/S transition for T. gondii growth.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ciclo Celular/fisiologia , Proliferação de Células , Fase G2/fisiologia , Toxoplasma/fisiologia , Animais , Western Blotting , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Linhagem Celular , Ciclina B/genética , Ciclina B/metabolismo , Ciclina B1 , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citometria de Fluxo , Interações Hospedeiro-Parasita , Humanos , Imuno-Histoquímica , Imunoprecipitação , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Toxoplasma/crescimento & desenvolvimento , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases
17.
Genes (Basel) ; 10(1)2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669400

RESUMO

DNA methylation, catalyzed by DNA methyltransferases (DNMTs), is an epigenetic mark that needs to be faithfully replicated during mitosis in order to maintain cell phenotype during successive cell divisions. This epigenetic mark is located on the 5'-carbon of the cytosine mainly within cytosine⁻phosphate⁻guanine (CpG) dinucleotides. DNA methylation is asymmetrically positioned on both DNA strands, temporarily generating a hemi-methylated state after DNA replication. Hemi-methylation is a particular status of DNA that is recognized by ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1) through its SET- (Su(var)3-9, Enhancer-of-zeste and Trithorax) and RING-associated (SRA) domain. This interaction is considered to be involved in the recruitment of DNMT1 to chromatin in order to methylate the adequate cytosine on the newly synthetized DNA strand. The UHRF1/DNMT1 tandem plays a pivotal role in the inheritance of DNA methylation patterns, but the fine-tuning mechanism remains a mystery. Indeed, because DNMT1 experiences difficulties in finding the cytosine to be methylated, it requires the help of a guide, i.e., of UHRF1, which exhibits higher affinity for hemi-methylated DNA vs. non-methylated DNA. Two models of the UHRF1/DNMT1 dialogue were suggested to explain how DNMT1 is recruited to chromatin: (i) an indirect communication via histone H3 ubiquitination, and (ii) a direct interaction of UHRF1 with DNMT1. In the present review, these two models are discussed, and we try to show that they are compatible with each other.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Epigênese Genética , Animais , Humanos , Ubiquitina-Proteína Ligases
18.
Int J Parasitol ; 38(2): 249-58, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17822706

RESUMO

IFN-gamma production is a hallmark of acute infection with the protozoan parasite Toxoplasma gondii. The tryptophan-catabolising enzyme indoleamine 2,3-dioxygenase (IDO), as well as inducible nitric oxide synthase (NOS2) are induced by IFN-gamma and can play extremely diverse roles in immune regulation, defence against pathogens and physiological homeostasis. We investigated the regulation of these two central enzymes in the placenta during acute infection of pregnant female mice. Using IFN-gamma receptor knockout (IFNgammaR-/-) mice, we showed that IDO is not constitutively expressed in term placentas. In contrast, NOS2 expression was observed, largely dependent on IFN-gamma signalling. Upon infection with the avirulent PRU strain of T. gondii, IDO mRNA expression was induced in an IFNgammaR-dependent manner. Surprisingly, NOS2 mRNA was severely suppressed. Importantly, we showed in crossing experiments of heterozygote (IFNgammaR+/-) mothers with IFNgammaR-/- males and vice versa that IDO expression largely depends on the presence of IFN-gamma receptors on foetal cells, and to a lesser extent on maternal cells. Immunohistochemical analysis localised foetal IDO production to invasive trophoblasts within the maternal part of the placenta. The placental vascular endothelium only stained positive when the mothers possessed functional IFN-gamma receptors. In contrast, placental NOS2 expression, but also its suppression following infection, seems to be largely dependent on IFN-gamma signalling in maternal cells. Neither factor appears to regulate placental T. gondii growth, as we observed no difference in parasite numbers between (+/-) and (-/-) foetuses. Taken together, our results demonstrate the crucial role of the foetus in placental IDO, but not NOS2, production following T. gondii infection.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Placenta/enzimologia , Complicações Parasitárias na Gravidez/enzimologia , Toxoplasma/fisiologia , Toxoplasmose/enzimologia , Animais , Feminino , Feto/imunologia , Feto/metabolismo , Feto/parasitologia , Genes de Protozoários , Imuno-Histoquímica , Indolamina-Pirrol 2,3,-Dioxigenase/análise , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Interferon gama/genética , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/análise , Óxido Nítrico Sintase Tipo II/genética , Parasitemia , Placenta/imunologia , Placenta/parasitologia , Gravidez , Complicações Parasitárias na Gravidez/imunologia , RNA Mensageiro/análise , Receptores de Interferon/análise , Receptores de Interferon/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Toxoplasma/genética , Toxoplasmose/imunologia , Receptor de Interferon gama
19.
Radiat Res ; 169(2): 240-4, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18220474

RESUMO

ICBP90/UHRF1, which is overexpressed in cancer cells and is down-regulated by p53, possesses a methylated CpG binding affinity and binds to the methylated promoters of tumor suppressor genes in cancer cells with HDAC1 and DNMT1, suggesting suppression of these genes and maintenance of methylation status which leads to carcinogenesis. Recently, it was reported that the human homolog of Np95 is different from ICBP90 but not from UHRF1. Because UHRF1 is the gene symbol of ICBP90, the claim is a little confusing; that is, UHRF1 and ICBP90 are identical. Because the previously published genomic structure of the ICBP90 gene needed to be revised and the registered ICBP90 sequence (AF129507) contains two rare polymorphisms or sequence errors, we think that confusion could occur. Here we show the revised ICBP90 gene structure and 366 polymorphisms in this gene. Our conclusion is that the human homolog of Np95 is ICBP90, whose gene symbol is UHRF1.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Mapeamento Cromossômico , Proteínas Nucleares/genética , Animais , Sequência de Bases , Sequência Conservada/genética , Humanos , Camundongos , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Ubiquitina-Proteína Ligases
20.
Oncol Lett ; 15(1): 3-10, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29285183

RESUMO

Ubiquitin-like containing plant homeodomain and RING finger domains 1 (UHRF1) is an anti-apoptotic protein involved in the silencing of several tumor suppressor genes (TSGs) through epigenetic modifications including DNA methylation and histone post-translational alterations, and also epigenetic-independent mechanisms. UHRF1 overexpression is observed in a number of solid tumors and hematological malignancies, and is considered a primary mechanism in inhibiting apoptosis. UHRF1 exerts its inhibitory activity on TSGs by binding to functional domains and therefore influences several epigenetic actors including DNA methyltransferase, histone deacetylase 1, histone acetyltransferase Tat-interacting protein 60 and histone methyltransferases G9a and Suv39H1. UHRF1 is considered to control a large macromolecular protein complex termed epigenetic code replication machinery, in order to maintain epigenetic silencing of TSGs during cell division, thus enabling cancer cells to escape apoptosis. MicroRNAs (miRNAs) are able to regulate the expression of its target gene by functioning as either an oncogene or a tumor suppressor. In the present review, the role of tumor suppressive miRNAs in the regulation of UHRF1, and the importance of targeting the microRNA/UHRF1 pathways in order to induce the reactivation of silenced TSGs and subsequent apoptosis are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA