Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39123991

RESUMO

High-temperature wireless sensing is crucial for monitoring combustion chambers and turbine stators in aeroengines, where surface temperatures can reach up to 1200 °C. Surface Acoustic Wave (SAW) temperature sensors are an excellent choice for these measurements. However, at extreme temperatures, they face issues such as agglomeration and recrystallization of electrodes, leading to loss of conductivity and reduced quality factor, hindering effective wireless signal transmission. This study develops an LGS SAW sensor with a Pt-10%Rh/Zr/Pt-10%Rh/Zr/Pt-10%Rh/Zr multilayer composite electrode structure to address these challenges. We demonstrate that the sensor can achieve wireless temperature measurements from room temperature to 1200 °C with an accuracy of 1.59%. The composite electrodes excite a quasi-shear wave on the LGS substrate, maintaining a Q-factor of 3526 at room temperature, providing an initial assurance for the strength of the wireless interrogation echo signal. The sensor operates stably for 2.18 h at 1200 °C before adhesion loss between the composite electrode and the substrate causes a sudden increase in resonant frequency. This study highlights the durability of the proposed electrode materials and structure at extreme temperatures and suggests future research to improve adhesion and extend the sensor's lifespan, thereby enhancing the reliability and effectiveness of high-temperature wireless sensing in aerospace applications.

2.
Micromachines (Basel) ; 15(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38793128

RESUMO

Continuous monitoring of vital signs based on advanced sensing technologies has attracted extensive attention due to the ravages of COVID-19. A maintenance-free and low-cost passive wireless sensing system based on surface acoustic wave (SAW) device can be used to continuously monitor temperature. However, the current SAW-based passive sensing system is mostly designed at a low frequency around 433 MHz, which leads to the relatively large size of SAW devices and antenna, hindering their application in wearable devices. In this paper, SAW devices with a resonant frequency distributed in the 870 MHz to 960 MHz range are rationally designed and fabricated. Based on the finite-element method (FEM) and coupling-of-modes (COM) model, the device parameters, including interdigital transducer (IDT) pairs, aperture size, and reflector pairs, are systematically optimized, and the theoretical and experimental results show high consistency. Finally, SAW temperature sensors with a quality factor greater than 2200 are obtained for real-time temperature monitoring ranging from 20 to 50 °C. Benefitting from the higher operating frequency, the size of the sensing system can be reduced for human body temperature monitoring, showing its potential to be used as a wearable monitoring device in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA