Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790399

RESUMO

Opioids have decreased analgesic potency (but not efficacy) in aged rodents compared with adults; however, the neural mechanisms underlying this attenuated response are not yet known. The present study investigated the impact of advanced age and biological sex on opioid signaling in the ventrolateral periaqueductal gray (vlPAG) in the presence of chronic inflammatory pain. Assays measuring µ-opioid receptor (MOR) radioligand binding, GTPγS binding, receptor phosphorylation, cAMP inhibition, and regulator of G-protein signaling (RGS) protein expression were performed on vlPAG tissue from adult (2-3 months) and aged (16-18 months) male and female rats. Persistent inflammatory pain was induced by intraplantar injection of complete Freund's adjuvant (CFA). Adult males exhibited the highest MOR binding potential (BP) and highest G-protein activation (activation efficiency ratio) in comparison to aged males and females (adult and aged). No impact of advanced age or sex on MOR phosphorylation state was observed. DAMGO-induced cAMP inhibition was highest in the vlPAG of adult males compared with aged males and females (adult and aged). vlPAG levels of RGS4 and RGS9-2, critical for terminating G-protein signaling, were assessed using RNAscope. Adult rats (both males and females) exhibited lower levels of vlPAG RGS4 and RGS9-2 mRNA expression compared with aged males and females. The observed age-related reductions in vlPAG MOR BP, G-protein activation efficiency, and cAMP inhibition, along with the observed age-related increases in RGS4 and RGS9-2 vlPAG expression, provide potential mechanisms whereby the potency of opioids is decreased in the aged population.SIGNIFICANCE STATEMENTOpioids have decreased analgesic potency (but not efficacy) in aged rodents compared with adults; however, the neural mechanisms underlying this attenuated response are not yet known. In the present study, we observed age-related reductions in ventrolateral periaqueductal gray (vlPAG) µ-opioid receptor (MOR) binding potential (BP), G-protein activation efficiency, and cAMP inhibition, along with the observed age-related increases in regulator of G-protein signaling (RGS)4 and RGS9-2 vlPAG expression, providing potential mechanisms whereby the potency of opioids is decreased in the aged population. These coordinated decreases in opioid receptor signaling may explain the previously reported reduced potency of opioids to produce pain relief in females and aged rats.

2.
Horm Behav ; 153: 105384, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37295323

RESUMO

Over the last two decades, the number of infants exposed to opioids in utero has quadrupled in the United States, with some states reporting rates as high as 55 infants per 1000 births. Clinical studies report that children previously exposed to opioids during gestation show significant deficits in social behavior, including an inability to form friendships or other social relationships. To date, the neural mechanisms whereby developmental opioid exposure disrupts social behavior remain unknown. Using a novel paradigm of perinatal opioid administration, we tested the hypothesis that chronic opioid exposure during critical developmental periods would disrupt juvenile play. As oxytocin is a major regulator of sociability, the impact of perinatal morphine exposure on oxytocin peptide expression was also examined. Juvenile play was assessed in vehicle- or morphine-exposed male and female rats at P25, P35, and P45. Classical features of juvenile play were measured, including time spent engaged in social play, time not in contact, number of pins, and number of nape attacks. We report that morphine-exposed males and females spend less time engaged in play behavior than control males and females, with a corresponding increase in time spent alone. Morphine-exposed males and females also initiated fewer pins and nape attacks. Together, these data suggest that male and female rats exposed to morphine during critical developmental periods are less motivated to participate in social play, potentially due to alterations in oxytocin-mediated reward signaling.


Assuntos
Analgésicos Opioides , Ocitocina , Gravidez , Ratos , Animais , Masculino , Feminino , Analgésicos Opioides/farmacologia , Ocitocina/farmacologia , Morfina/farmacologia , Recompensa , Encéfalo
3.
J Neurosci ; 37(12): 3202-3214, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28219988

RESUMO

Although morphine remains the primary drug prescribed for alleviation of severe or persistent pain, both preclinical and clinical studies have shown that females require two to three times more morphine than males to produce comparable levels of analgesia. In addition to binding to the neuronal µ-opioid receptor, morphine binds to the innate immune receptor toll-like receptor 4 (TLR4) localized primarily on microglia. Morphine action at TLR4 initiates a neuroinflammatory response that directly opposes the analgesic effects of morphine. Here, we test the hypothesis that the attenuated response to morphine observed in females is the result of increased microglia activation in the periaqueductal gray (PAG), a central locus mediating the antinociceptive effects of morphine. We report that, whereas no overall sex differences in the density of microglia were noted within the PAG of male or female rats, microglia exhibited a more "activated" phenotype in females at baseline, with the degree of activation a significant predictor of morphine half-maximal antinociceptive dose (ED50) values. Priming microglia with LPS induced greater microglia activation in the PAG of females compared with males and was accompanied by increased transcription levels of IL-1ß and a significant rightward shift in the morphine dose-response curve. Blockade of morphine binding to PAG TLR4 with (+)-naloxone potentiated morphine antinociception significantly in females such that no sex differences in ED50 were observed. These results demonstrate that PAG microglia are sexually dimorphic in both basal and LPS-induced activation and contribute to the sexually dimorphic effects of morphine in the rat.SIGNIFICANCE STATEMENT We demonstrate that periaqueductal gray (PAG) microglia contribute to the sexually dimorphic effects of morphine. Specifically, we report that increased activation of microglia in the PAG contributes to the attenuated response to morphine observed in females. Our data further implicate the innate immune receptor toll-like receptor 4 (TLR4) as an underlying mechanism mediating these effects and establish that TLR4 inhibition in the PAG of females reverses the sex differences in morphine responsiveness. These data suggest novel methods to improve current opioid-based pain management via inhibition of glial TLR4 and illustrate the necessity for sex-specific research and individualized treatment strategies for the management of pain in men and women.


Assuntos
Microglia/efeitos dos fármacos , Microglia/fisiologia , Morfina/administração & dosagem , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/fisiologia , Receptor 4 Toll-Like/metabolismo , Animais , Contagem de Células , Relação Dose-Resposta a Droga , Resistência a Medicamentos/fisiologia , Feminino , Masculino , Microglia/citologia , Substância Cinzenta Periaquedutal/citologia , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais
4.
J Neurosci Res ; 95(1-2): 487-499, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27870418

RESUMO

Morphine has been and continues to be one of the most potent and widely used drugs for the treatment of pain. Clinical and animal models investigating sex differences in pain and analgesia demonstrate that morphine is a more potent analgesic in males than in females. In addition to binding to the neuronal µ-opioid receptor, morphine binds to the innate immune receptor toll-like receptor 4 (TLR4), located on glial cells. Activation of glial TLR4 initiates a neuroinflammatory response that directly opposes morphine analgesia. Females of many species have a more active immune system than males; however, few studies have investigated glial cells as a potential mechanism driving sexually dimorphic responses to morphine. This Mini-Review illustrates the involvement of glial cells in key processes underlying observed sex differences in morphine analgesia and suggests that targeting glia may improve current treatment strategies for pain. © 2016 Wiley Periodicals, Inc.


Assuntos
Analgésicos Opioides/farmacologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/fisiologia , Caracteres Sexuais , Animais , Humanos , Neuroglia/efeitos dos fármacos
5.
Dev Neurosci ; 37(1): 1-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25402471

RESUMO

Previous studies in rats have established that inflammatory pain experienced on the day of birth (P0) decreases sensitivity to acute noxious, anxiety- and stress-provoking stimuli. However, to date, the impact of early-life pain on adult responses to chronic stress is not known. Further, the ability of morphine, administered at the time of injury, to mitigate changes in adult behavioral and hormonal responses to acute or chronic stressors has not been examined. P0 male and female Sprague-Dawley rat pups were given an intraplantar injection of 1% carrageenan or handled in an identical manner in the presence or absence of morphine. As adults, rats that experienced early-life pain displayed decreased sensitivity to acute stressors, as indicated by increased time in the inner area of the Open Field, and increased latency to immobility and decreased time immobile in the Forced Swim Test (FST). An accelerated return of corticosterone to baseline was also observed. Morphine administration at the time of injury completely reversed this 'hyporesponsive' phenotype. By contrast, following 7 days of chronic variable stress, injured animals displayed a 'hyperresponsive' phenotype in that they initiated immobility and spent significantly more time immobile in the FST than controls. Responses to chronic stress were also rescued in animals that received morphine at the time of injury. These data suggest that analgesia for early-life pain prevents adult hyposensitivity to acute anxiety- and stress-provoking stimuli and increased vulnerability to chronic stress, and have important clinical implications for the management of pain in infants.


Assuntos
Analgesia , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Morfina/farmacologia , Dor/fisiopatologia , Estresse Psicológico/tratamento farmacológico , Envelhecimento , Animais , Animais Recém-Nascidos , Ansiedade/fisiopatologia , Feminino , Gravidez , Ratos Sprague-Dawley , Estresse Psicológico/fisiopatologia
6.
Neurobiol Learn Mem ; 118: 30-41, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25451312

RESUMO

The present experiment tested the hypothesis that neonatal injury disrupts adult hippocampal functioning and that normal aging or chronic stress during adulthood, which are known to have a negative impact on hippocampal function, exacerbate these effects. Male and female Sprague-Dawley rats were given an intraplantar injection of the inflammatory agent carrageenan (1%) on the day of birth and their memory was tested in the hippocampal-dependent spatial water maze in adulthood and again in middle age. We found that neonatal injury impaired hippocampal-dependent memory in adulthood, that the effects of injury on memory were more pronounced in middle-aged male rats, and that chronic stress accelerated the onset of these memory deficits. Neonatal injury also decreased glucocorticoid receptor mRNA in the dorsal CA1 area of middle-aged rats, a brain region critical for spatial memory. Morphine administration at the time of injury completely reversed injury-induced memory deficits, but neonatal morphine treatments in the absence of injury produced significant memory impairments in adulthood. Collectively, these findings are consistent with our hypothesis that neonatal injury produces long-lasting disruption in adult hippocampal functioning.


Assuntos
Hipocampo/fisiopatologia , Inflamação/complicações , Transtornos da Memória/etiologia , Dor/fisiopatologia , Memória Espacial/fisiologia , Estresse Psicológico/complicações , Fatores Etários , Animais , Animais Recém-Nascidos , Feminino , Hipocampo/metabolismo , Masculino , Morfina/administração & dosagem , Dor/etiologia , Dor/psicologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Fatores Sexuais , Memória Espacial/efeitos dos fármacos
7.
Stress ; 18(4): 367-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26176590

RESUMO

The last decade has witnessed profound growth in studies examining the role of fundamental neuroimmune processes as key mechanisms that might form a natural bridge between normal physiology and pathological outcomes. Rooted in core concepts from psychoneuroimmunology, this review utilizes a succinct, exemplar-driven approach of several model systems that contribute significantly to our knowledge of the mechanisms by which neuroimmune processes interact with stress physiology. Specifically, we review recent evidence showing that (i) stress challenges produce time-dependent and stressor-specific patterns of cytokine/chemokine expression in the CNS; (ii) inflammation-related genes exhibit unique expression profiles in males and females depending upon individual, cooperative or antagonistic interactions between steroid hormone receptors (estrogen and glucocorticoid receptors); (iii) adverse social experiences incurred through repeated social defeat engage a dynamic process of immune cell migration from the bone marrow to brain and prime neuroimmune function and (iv) early developmental exposure to an inflammatory stimulus (carageenin injection into the hindpaw) has a lasting influence on stress reactivity across the lifespan. As such, the present review provides a theoretical framework for understanding the role that neuroimmune mechanisms might play in stress plasticity and pathological outcomes, while at the same time pointing toward features of the individual (sex, developmental experience, stress history) that might ultimately be used for the development of personalized strategies for therapeutic intervention in stress-related pathologies.


Assuntos
Encéfalo/imunologia , Citocinas/imunologia , Regulação da Expressão Gênica , Neuroimunomodulação/imunologia , Receptores de Estrogênio/imunologia , Receptores de Glucocorticoides/imunologia , Estresse Psicológico/imunologia , Adultos Sobreviventes de Eventos Adversos na Infância , Animais , Encéfalo/crescimento & desenvolvimento , Quimiocinas/imunologia , Feminino , Humanos , Inflamação , Masculino , Plasticidade Neuronal , Fatores Sexuais
8.
J Neurosci ; 33(40): 15952-63, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24089500

RESUMO

The ventrolateral periaqueductal gray (vlPAG) is an integral locus for morphine action. Although it is clear that glia contribute to the development of morphine tolerance, to date, the investigation of their role has been limited to spinal and medullary loci. Opioids induce a neuroinflammatory response that opposes acute and long-term analgesia, thereby limiting their efficacy as therapeutic agents. Recent data suggest that the innate immune receptor Toll-like receptor 4 (TLR4), along with its coreceptor myeloid differentiation factor-2 (MD-2), mediates these effects. To date, the brain loci through which TLR4 modulates morphine tolerance have not been identified. We have previously demonstrated that chronic subcutaneous morphine results in tolerance that is accompanied by increases in vlPAG glial cell activity. Using in vivo pharmacological manipulations of vlPAG glia and TLR4 in the adult male rat, we show that intra-vlPAG administration of the general glial cell metabolic inhibitor propentofylline or the astrocyte activity inhibitor fluorocitrate attenuate tolerance to morphine. Characterization of MD-2 expression within the PAG revealed dense MD-2 expression throughout the vlPAG. Further, antagonizing vlPAG TLR4 dose dependently prevented the development of morphine tolerance, and vlPAG microinjections of TLR4 agonists dose dependently produced a "naive" tolerance to subsequent challenge doses of morphine. Finally, using a model of persistent inflammatory pain and pharmacological manipulation of TLR4 we demonstrate that systemic antagonism of TLR4 potentiated acute morphine antihyperalgesia. These results, together, indicate that vlPAG glia regulate morphine tolerance development via TLR4 signaling, and implicate TLR4 as a potential therapeutic target for the treatment of pain.


Assuntos
Analgésicos Opioides/farmacologia , Morfina/farmacologia , Dor/tratamento farmacológico , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Analgesia/métodos , Analgésicos Opioides/uso terapêutico , Animais , Tolerância a Medicamentos , Inflamação/metabolismo , Inflamação/fisiopatologia , Lipopolissacarídeos/farmacologia , Masculino , Morfina/uso terapêutico , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Dor/metabolismo , Dor/fisiopatologia , Medição da Dor , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptor 4 Toll-Like/metabolismo
9.
eNeuro ; 11(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38164552

RESUMO

Gordon Holmes syndrome (GHS) is a neurological disorder associated with neuroendocrine, cognitive, and motor impairments with corresponding neurodegeneration. Mutations in the E3 ubiquitin ligase RNF216 are strongly linked to GHS. Previous studies show that deletion of Rnf216 in mice led to sex-specific neuroendocrine dysfunction due to disruptions in the hypothalamic-pituitary-gonadal axis. To address RNF216 action in cognitive and motor functions, we tested Rnf216 knock-out (KO) mice in a battery of motor and learning tasks for a duration of 1 year. Although male and female KO mice did not demonstrate prominent motor phenotypes, KO females displayed abnormal limb clasping. KO mice also showed age-dependent strategy and associative learning impairments with sex-dependent alterations of microglia in the hippocampus and cortex. Additionally, KO males but not females had more negative resting membrane potentials in the CA1 hippocampus without any changes in miniature excitatory postsynaptic current (mEPSC) frequencies or amplitudes. Our findings show that constitutive deletion of Rnf216 alters microglia and neuronal excitability, which may provide insights into the etiology of sex-specific impairments in GHS.


Assuntos
Ataxia Cerebelar , Hormônio Liberador de Gonadotropina/deficiência , Hipogonadismo , Microglia , Masculino , Feminino , Camundongos , Animais , Camundongos Knockout , Cognição , Ubiquitina-Proteína Ligases/genética
10.
Front Pain Res (Lausanne) ; 5: 1241015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601924

RESUMO

Specific Aim: Provide an overview of the literature addressing major areas pertinent to pain in transgender persons and to identify areas of primary relevance for future research. Methods: A team of scholars that have previously published on different areas of related research met periodically though zoom conferencing between April 2021 and February 2023 to discuss relevant literature with the goal of providing an overview on the incidence, phenotype, and mechanisms of pain in transgender patients. Review sections were written after gathering information from systematic literature searches of published or publicly available electronic literature to be compiled for publication as part of a topical series on gender and pain in the Frontiers in Pain Research. Results: While transgender individuals represent a significant and increasingly visible component of the population, many researchers and clinicians are not well informed about the diversity in gender identity, physiology, hormonal status, and gender-affirming medical procedures utilized by transgender and other gender diverse patients. Transgender and cisgender people present with many of the same medical concerns, but research and treatment of these medical needs must reflect an appreciation of how differences in sex, gender, gender-affirming medical procedures, and minoritized status impact pain. Conclusions: While significant advances have occurred in our appreciation of pain, the review indicates the need to support more targeted research on treatment and prevention of pain in transgender individuals. This is particularly relevant both for gender-affirming medical interventions and related medical care. Of particular importance is the need for large long-term follow-up studies to ascertain best practices for such procedures. A multi-disciplinary approach with personalized interventions is of particular importance to move forward.

11.
Dev Neurosci ; 35(4): 326-37, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23838073

RESUMO

Approximately 500,000 infants are born prematurely each year in the United States. These infants typically require an extensive stay in the neonatal intensive care unit (NICU), where they experience on average 14 painful and invasive procedures each day. These procedures, including repeated heel lance, insertion of intravenous lines, and respiratory and gastric suctioning, typically result in an inflammatory response, inducing pain and stress in the newborn. Remarkably, the majority of these procedures are performed in the complete absence of pre- or post-emptive analgesics. Recent clinical studies report that former NICU patients have increased thresholds for pain and stress later in life as compared with term-born infants. However, to date, the mechanisms whereby early-life inflammation alters later-life response to stress and pain are not known. The present studies were conducted to determine if neonatal injury impairs adult responses to anxiety- and stress-provoking stimuli. As we have previously reported that early-life pain results in a significant increase in opioid peptide expression within the midbrain periaqueductal gray, the role of endogenous opioids in our behavioral studies was also examined. Male and female rats received an intraplantar injection of the inflammatory agent carrageenan (1%) on the day of birth. In adulthood, animals were assessed for changes in response to anxiety- and stress-provoking stimuli using the open field and forced swim tests, respectively. Injury-induced changes in sucrose preference and stress-induced analgesia were also assessed. As adults, neonatally injured animals displayed a blunted response to both anxiety- and stress-provoking stimuli, as indicated by significantly more time spent in the inner area of the open field and a 2-fold increase in latency to immobility in the forced swim test as compared to controls. No change in sucrose preference was observed. Using in situ hybridization and immunohistochemistry, we observed a 2-fold increase in enkephalin mRNA and protein expression, respectively, in stress-related brain regions including the central amygdala and lateral septum. Administration of the opioid receptor antagonist naloxone reversed the attenuated responses to forced swim stress and stress-induced analgesia, suggesting the changes in stress-related behavior were opioid-dependent. Together, these data contribute to mounting evidence that neonatal injury in the absence of analgesics has adverse effects that are both long-term and polysystemic.


Assuntos
Animais Recém-Nascidos/fisiologia , Estresse Psicológico/psicologia , Tonsila do Cerebelo/fisiologia , Analgesia , Anedonia , Animais , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Densitometria , Encefalina Metionina/biossíntese , Encefalina Metionina/genética , Encefalinas/biossíntese , Encefalinas/genética , Feminino , Preferências Alimentares/efeitos dos fármacos , Imuno-Histoquímica , Hibridização In Situ , Peptídeos Opioides/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Gravidez , Precursores de Proteínas/biossíntese , Precursores de Proteínas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Septo do Cérebro/fisiologia , Estresse Psicológico/fisiopatologia , Sacarose/farmacologia , Natação/psicologia
12.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790483

RESUMO

The increased use of opioids by women of reproductive age has resulted in a dramatic rise in number of infants exposed to opioids in utero. Although perinatal opioid exposure (POE) has been associated with an elevated risk of infection and hospitalization later in life, the mechanism(s) by which opioids influence immune development and maturation is not fully elucidated. Alterations in the intestinal microbiota composition, which leads to changes in immune training and maturation, could be at play. Chronic opioid use in adults is associated with a proinflammatory and pathogenic microbiota composition; therefore, we hypothesized here that in utero morphine exposure could negatively affect intestinal microbiota composition, leading to alterations in immune system function. We report that a clinically-relevant model of perinatal opioid exposure, in rats, induces profound intestinal microbiota dysbiosis that is maintained into adulthood. Furthermore, microbial maturity was reduced in morphine-exposed offspring. This suggests that increased risk of infection observed in children exposed to opioids during gestation may be a consequence of microbiota alterations with downstream impact on immune system development. Further investigation of how perinatal morphine induces dysbiosis will be critical to the development of early life interventions designed to ameliorate the increased risk of infection observed in these children.

13.
bioRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945450

RESUMO

Over the last two decades, the number of infants exposed to opioids in utero has quadrupled in the United States, with some states reporting rates as high as 55 infants per 1000 births. Clinical studies report that children previously exposed to opioids during gestation show significant deficits in social behavior, including an inability to form friendships or other social relationships. To date, the neural mechanisms whereby developmental opioid exposure disrupts social behavior remain unknown. Using a novel paradigm of perinatal opioid administration, we tested the hypothesis that chronic opioid exposure during critical developmental periods would disrupt juvenile play. As oxytocin is a major regulator of sociability, the impact of perinatal morphine exposure on oxytocin peptide and receptor expression was also examined. Juvenile play was assessed in vehicle- or morphine-exposed male and female rats at P25, P35, and P45. Classical features of juvenile play were measured, including time spent engaged in social play, time not in contact, number of pins, and number of nape attacks. We report that morphine-exposed females spend less time engaged in play behavior than control males and females, with a corresponding increase in time spent alone. Morphine-exposed females also initiated fewer pins and nape attacks. Oxytocin receptor binding was reduced in morphine-exposed females in the nucleus accumbens, a brain region critical for social reward. Together, these data suggest that females exposed to morphine during critical developmental periods are less motivated to participate in social play, potentially due to alterations in oxytocin-mediated reward signaling.

14.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014019

RESUMO

Every fifteen minutes, a baby is born in the U.S. experiencing neonatal opioid withdrawal syndrome (NOWS). Since 2004, the rate of NOWS has increased 7-fold. Clinical studies have established intrauterine exposure to drugs of abuse as a risk factor for adverse health outcomes in adult life, including the propensity for future illicit drug use. Despite extensive knowledge about common mechanisms of action in the neural circuitry that drives opioid and alcohol reward, there is little data on the risks that those born with NOWS face regarding alcohol use later in life. Here, we investigate the impact of perigestational opioid exposure (POE) on the mesolimbic reward system of male and female Sprague Dawley rats at postnatal and adolescent ages. Our laboratory has developed a clinically relevant model for morphine exposure spanning pre-conception to the first week of life. Using this model, we found that POE increased alcohol consumption in female rats under noncontingent conditions, and inversely, reduced alcohol consumption in both male and female rats during operant conditioning sessions. Operant responding was also reduced for sucrose, suggesting that the impact of POE on reward-seeking behaviors is not limited to drugs of abuse. Expression of µ-opioid receptors was also significantly altered in the nucleus accumbens and medial habenula, regions previously shown to play a significant role in reward/aversion circuitry.

15.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790325

RESUMO

As a result of the current opioid crisis, the rate of children born exposed to opioids has skyrocketed. Later in life, these children have an increased risk for hospitalization and infection, raising concerns about potential immunocompromise, as is common with chronic opioid use. Opioids can act directly on immune cells or indirectly via the central nervous system to decrease immune system activity, leading to increased susceptibility, morbidity, and mortality to infection. However, it is currently unknown how perinatal opioid exposure (POE) alters immune function. Using a clinically relevant and translatable model of POE, we have investigated how baseline immune function and the reaction to an immune stimulator, lipopolysaccharide, is influenced by in utero opioid exposure in adult male and female rats. We report here that POE potentiates the febrile and neuroinflammatory response to lipopolysaccharide, likely as a consequence of suppressed immune function at baseline (including reduced antibody production). This suggests that POE increases susceptibility to infection by manipulating immune system development, consistent with the clinical literature. Investigation of the mechanisms whereby POE increases susceptibility to pathogens is critical for the development of potential interventions for immunosuppressed children exposed to opioids in utero.

16.
J Chem Neuroanat ; 124: 102123, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35738454

RESUMO

Preclinical and clinical studies have reported sex differences in pain and analgesia. These differences may be linked to anatomical structures of the central nervous system pain modulatory circuitry, and/or hormonal milieu. The midbrain periaqueductal gray (PAG) is a critical brain region for descending inhibition of pain. The PAG projects to the rostral ventromedial medulla (RVM), which projects bilaterally to the spinal cord to inhibit pain. In addition to pain, this descending circuit (or pathway) can be engaged by endogenous opioids (i.e., endorphins) or exogenous opioids (i.e., morphine), and we have previously reported sex differences in the activation of this circuit during pain and analgesia. Forebrain structures, including the amygdala, project to and engage the PAG-RVM circuit during persistent inflammatory pain. However, there are limited studies in females detailing this amygdalar-PAG pathway and its involvement during persistent inflammatory pain. The objective of the present study was to delineate the neural projections from the amygdala to the PAG in male and female rats to determine if they are sexually distinct in their anatomical organization. We also examined the activation of this pathway by inflammatory pain and the co-localization of receptors for estrogen. Injection of the retrograde tracer fluorogold (FG) into the ventrolateral PAG (vlPAG) resulted in dense retrograde labeling in both the central amygdala (CeA) and medial amygdala (MeA). While the number of CeA-vlPAG neurons were comparable between the sexes, there were more MeA-vlPAG neurons in females. Inflammatory pain resulted in greater activation of the amygdala in males; however, females displayed higher Fos expression within CeA-vlPAG projection neurons. Females expressed higher ERα in the MeA and CeA and the same was true of the projection neurons. Together, these data indicate that although the MeA-vlPAG projections are denser in females, inflammatory pain does not significantly activate these projections. In contrast, inflammatory pain resulted in a greater activation of the CeA-vlPAG pathway in females. As females experience a greater number of chronic pain syndromes, the CeA-vlPAG pathway may play a facilitatory (and not inhibitory) role in pain modulation.


Assuntos
Substância Cinzenta Periaquedutal , Caracteres Sexuais , Animais , Feminino , Masculino , Bulbo/metabolismo , Dor/metabolismo , Substância Cinzenta Periaquedutal/metabolismo , Ratos , Ratos Sprague-Dawley
18.
iScience ; 25(6): 104386, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35620441

RESUMO

Recessive mutations in RNF216/TRIAD3 cause Gordon Holmes syndrome (GHS), in which dysfunction of the hypothalamic-pituitary-gonadal (HPG) axis and neurodegeneration are thought to be core phenotypes. We knocked out Rnf216/Triad3 in a gonadotropin-releasing hormone (GnRH) hypothalamic cell line. Rnf216/Triad3 knockout (KO) cells had decreased steady-state GnRH and calcium transients. Rnf216/Triad3 KO adult mice had reductions in GnRH neuron soma size and GnRH production without changes in neuron densities. In addition, KO male mice had smaller testicular volumes that were accompanied by an abnormal release of inhibin B and follicle-stimulating hormone, whereas KO females exhibited irregular estrous cycling. KO males, but not females, had reactive microglia in the hypothalamus. Conditional deletion of Rnf216/Triad3 in neural stem cells caused abnormal microglia expression in males, but reproductive function remained unaffected. Our findings show that dysfunction of RNF216/TRIAD3 affects the HPG axis and microglia in a region- and sex-dependent manner, implicating sex-specific therapeutic interventions for GHS.

19.
J Neuroendocrinol ; 34(7): e13166, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35657290

RESUMO

Oxytocinergic actions within the hippocampal CA2 are important for neuromodulation, memory processing and social recognition. However, the source of the OTergic innervation, the cellular targets expressing the OT receptors (OTRs) and whether the PVN-to-CA2 OTergic system is altered during heart failure (HF), a condition recently associated with cognitive and mood decline, remains unknown. Using immunohistochemistry along with retrograde monosynaptic tracing, RNAscope and a novel OTR-Cre rat line, we show that the PVN (but not the supraoptic nucleus) is an important source of OTergic innervation to the CA2. These OTergic fibers were found in many instances in close apposition to OTR expressing cells within the CA2. Interestingly, while only a small proportion of neurons were found to express OTRs (~15%), this expression was much more abundant in CA2 astrocytes (~40%), an even higher proportion that was recently reported for astrocytes in the central amygdala. Using an established ischemic rat heart failure (HF) model, we found that HF resulted in robust changes in the PVN-to-CA2 OTergic system, both at the source and target levels. Within the PVN, we found an increased OT immunoreactivity, along with a diminished OTR expression in PVN neurons. Within the CA2 of HF rats, we observed a blunted OTergic innervation, along with a diminished OTR expression, which appeared to be restricted to CA2 astrocytes. Taken together, our studies highlight astrocytes as key cellular targets mediating OTergic PVN inputs to the CA2 hippocampal region. Moreover, they provide the first evidence for an altered PVN-to-CA2 OTergic system in HF rats, which could potentially contribute to previously reported cognitive and mood impairments in this animal model.


Assuntos
Insuficiência Cardíaca , Receptores de Ocitocina , Animais , Astrócitos/metabolismo , Insuficiência Cardíaca/metabolismo , Hipocampo/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Receptores de Ocitocina/metabolismo
20.
Front Neuroendocrinol ; 31(2): 193-202, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20144647

RESUMO

Over the last several decades, the relative contribution of early life events to individual disease susceptibility has been explored extensively. Only fairly recently, however, has it become evident that abnormal or excessive nociceptive activity experienced during the perinatal period may permanently alter the normal development of the CNS and influence future responses to somatosensory input. Given the significant rise in the number of premature infants receiving high-technology intensive care over the last 20 years, ex-preterm neonates may be exceedingly vulnerable to the long-term effects of repeated invasive interventions. The present review summarizes available clinical and laboratory findings on the lasting impact of exposure to noxious stimulation during early development, with a focus on the structural and functional alterations in nociceptive circuits, and its sexually dimorphic impact.


Assuntos
Recém-Nascido Prematuro , Limiar da Dor , Analgesia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Humanos , Recém-Nascido , Terapia Intensiva Neonatal , Masculino , Ratos , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA