Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(4): 355-373, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944084

RESUMO

GRID1 and GRID2 encode the enigmatic GluD1 and GluD2 proteins, which form tetrameric receptors that play important roles in synapse organization and development of the central nervous system. Variation in these genes has been implicated in neurodevelopmental phenotypes. We evaluated GRID1 and GRID2 human variants from the literature, ClinVar, and clinical laboratories and found that many of these variants reside in intolerant domains, including the amino terminal domain of both GRID1 and GRID2. Other conserved regions, such as the M3 transmembrane domain, show different intolerance between GRID1 and GRID2. We introduced these variants into GluD1 and GluD2 cDNA and performed electrophysiological and biochemical assays to investigate the mechanisms of dysfunction of GRID1/2 variants. One variant in the GRID1 distal amino terminal domain resides at a position predicted to interact with Cbln2/Cbln4, and the variant disrupts complex formation between GluD1 and Cbln2, which could perturb its role in synapse organization. We also discovered that, like the lurcher mutation (GluD2-A654T), other rare variants in the GRID2 M3 domain create constitutively active receptors that share similar pathogenic phenotypes. We also found that the SCHEMA schizophrenia M3 variant GluD1-A650T produced constitutively active receptors. We tested a variety of compounds for their ability to inhibit constitutive currents of GluD receptor variants and found that pentamidine potently inhibited GluD2-T649A constitutive channels (IC50 50 nM). These results identify regions of intolerance to variation in the GRID genes, illustrate the functional consequences of GRID1 and GRID2 variants, and suggest how these receptors function normally and in disease.


Assuntos
Sistema Nervoso Central , Receptores de Glutamato , Humanos , Sistema Nervoso Central/metabolismo , Mutação , Domínios Proteicos , Receptores de Glutamato/metabolismo
2.
Hum Mol Genet ; 32(19): 2857-2871, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37369021

RESUMO

Advances in sequencing technology have generated a large amount of genetic data from patients with neurological conditions. These data have provided diagnosis of many rare diseases, including a number of pathogenic de novo missense variants in GRIN genes encoding N-methyl-d-aspartate receptors (NMDARs). To understand the ramifications for neurons and brain circuits affected by rare patient variants, functional analysis of the variant receptor is necessary in model systems. For NMDARs, this functional analysis needs to assess multiple properties in order to understand how variants could impact receptor function in neurons. One can then use these data to determine whether the overall actions will increase or decrease NMDAR-mediated charge transfer. Here, we describe an analytical and comprehensive framework by which to categorize GRIN variants as either gain-of-function (GoF) or loss-of-function (LoF) and apply this approach to GRIN2B variants identified in patients and the general population. This framework draws on results from six different assays that assess the impact of the variant on NMDAR sensitivity to agonists and endogenous modulators, trafficking to the plasma membrane, response time course and channel open probability. We propose to integrate data from multiple in vitro assays to arrive at a variant classification, and suggest threshold levels that guide confidence. The data supporting GoF and LoF determination are essential to assessing pathogenicity and patient stratification for clinical trials as personalized pharmacological and genetic agents that can enhance or reduce receptor function are advanced. This approach to functional variant classification can generalize to other disorders associated with missense variants.


Assuntos
Doenças do Sistema Nervoso , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Mutação de Sentido Incorreto/genética , Doenças do Sistema Nervoso/metabolismo , Neurônios/metabolismo , Modelos Biológicos
3.
Cell Mol Life Sci ; 81(1): 153, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538865

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are members of the glutamate receptor family and participate in excitatory postsynaptic transmission throughout the central nervous system. Genetic variants in GRIN genes encoding NMDAR subunits are associated with a spectrum of neurological disorders. The M3 transmembrane helices of the NMDAR couple directly to the agonist-binding domains and form a helical bundle crossing in the closed receptors that occludes the pore. The M3 functions as a transduction element whose conformational change couples ligand binding to opening of an ion conducting pore. In this study, we report the functional consequences of 48 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M3 transmembrane helix. These de novo variants were identified in children with neurological and neuropsychiatric disorders including epilepsy, developmental delay, intellectual disability, hypotonia and attention deficit hyperactivity disorder. All 48 variants in M3 for which comprehensive testing was completed produce a gain-of-function (28/48) compared to loss-of-function (9/48); 11 variants had an indeterminant phenotype. This supports the idea that a key structural feature of the M3 gate exists to stabilize the closed state so that agonist binding can drive channel opening. Given that most M3 variants enhance channel gating, we assessed the potency of FDA-approved NMDAR channel blockers on these variant receptors. These data provide new insight into the structure-function relationship of the NMDAR gate, and suggest that variants within the M3 transmembrane helix produce a gain-of-function.


Assuntos
Epilepsia , Receptores de N-Metil-D-Aspartato , Criança , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Epilepsia/genética , Mutação de Sentido Incorreto , Fenótipo
4.
Cell Mol Life Sci ; 80(2): 42, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36645496

RESUMO

N-methyl-D-aspartate receptors (NMDARs) play vital roles in normal brain functions (i.e., learning, memory, and neuronal development) and various neuropathological conditions, such as epilepsy, autism, Parkinson's disease, Alzheimer's disease, and traumatic brain injury. Endogenous neuroactive steroids such as 24(S)-hydroxycholesterol (24(S)-HC) have been shown to influence NMDAR activity, and positive allosteric modulators (PAMs) derived from 24(S)-hydroxycholesterol scaffold can also enhance NMDAR function. This study describes the structural determinants and mechanism of action for 24(S)-hydroxycholesterol and two novel synthetic analogs (SGE-550 and SGE-301) on NMDAR function. We also show that these agents can mitigate the altered function caused by a set of loss-of-function missense variants in NMDAR GluN subunit-encoding GRIN genes associated with neurological and neuropsychiatric disorders. We anticipate that the evaluation of novel neuroactive steroid NMDAR PAMs may catalyze the development of new treatment strategies for GRIN-related neuropsychiatric conditions.


Assuntos
Doença de Alzheimer , Doenças do Sistema Nervoso , Neuroesteroides , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Neuroesteroides/farmacologia , Neuroesteroides/uso terapêutico , Hidroxicolesteróis/farmacologia , Hidroxicolesteróis/uso terapêutico , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/genética , Doença de Alzheimer/tratamento farmacológico , Esteroides/farmacologia , Regulação Alostérica/fisiologia
5.
Cell Mol Life Sci ; 80(4): 110, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000222

RESUMO

The short pre-M1 helix within the S1-M1 linker (also referred to as the pre-M1 linker) between the agonist-binding domain (ABD, S1) and the M1 transmembrane helix of the NMDA receptor (NMDAR) is devoid of missense variants within the healthy population but is a locus for de novo pathogenic variants associated with neurological disorders. Several de novo variants within this helix have been identified in patients presenting early in life with intellectual disability, developmental delay, and/or epilepsy. In this study, we evaluated functional properties for twenty variants within the pre-M1 linker in GRIN1, GRIN2A, and GRIN2B genes, including six novel missense variants. The effects of pre-M1 variants on agonist potency, sensitivity to endogenous allosteric modulators, response time course, channel open probability, and surface expression were assessed. Our data indicated that virtually all of the variants evaluated altered channel function, and multiple variants had profound functional consequences, which may contribute to the neurological conditions in the patients harboring the variants in this region. These data strongly suggest that the residues within the pre-M1 helix play a key role in channel gating and are highly intolerant to genetic variation.


Assuntos
Epilepsia , Deficiência Intelectual , Receptores de N-Metil-D-Aspartato , Humanos , Epilepsia/genética , Mutação de Sentido Incorreto/genética , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Cell Mol Life Sci ; 80(11): 345, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37921875

RESUMO

AMPA receptors are members of the glutamate receptor family and mediate a fast component of excitatory synaptic transmission at virtually all central synapses. Thus, their functional characteristics are a critical determinant of brain function. We evaluate intolerance of each GRIA gene to genetic variation using 3DMTR and report here the functional consequences of 52 missense variants in GRIA1-4 identified in patients with various neurological disorders. These variants produce changes in agonist EC50, response time course, desensitization, and/or receptor surface expression. We predict that these functional and localization changes will have important consequences for circuit function, and therefore likely contribute to the patients' clinical phenotype. We evaluated the sensitivity of variant receptors to AMPAR-selective modulators including FDA-approved drugs to explore potential targeted therapeutic options.


Assuntos
Doenças do Sistema Nervoso , Humanos , Doenças do Sistema Nervoso/genética , Transmissão Sináptica/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo
7.
J Med Genet ; 60(2): 183-192, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35393335

RESUMO

BACKGROUND: Malformations of cortical development (MCDs) have been reported in a subset of patients with pathogenic heterozygous variants in GRIN1 or GRIN2B, genes which encode for subunits of the N-methyl-D-aspartate receptor (NMDAR). The aim of this study was to further define the phenotypic spectrum of NMDAR-related MCDs. METHODS: We report the clinical, radiological and molecular features of 7 new patients and review data on 18 previously reported individuals with NMDAR-related MCDs. Neuropathological findings for two individuals with heterozygous variants in GRIN1 are presented. We report the clinical and neuropathological features of one additional individual with homozygous pathogenic variants in GRIN1. RESULTS: Heterozygous variants in GRIN1 and GRIN2B were associated with overlapping severe clinical and imaging features, including global developmental delay, epilepsy, diffuse dysgyria, dysmorphic basal ganglia and hippocampi. Neuropathological examination in two fetuses with heterozygous GRIN1 variants suggests that proliferation as well as radial and tangential neuronal migration are impaired. In addition, we show that neuronal migration is also impaired by homozygous GRIN1 variants in an individual with microcephaly with simplified gyral pattern. CONCLUSION: These findings expand our understanding of the clinical and imaging features of the 'NMDARopathy' spectrum and contribute to our understanding of the likely underlying pathogenic mechanisms leading to MCD in these patients.


Assuntos
Epilepsia , Microcefalia , Receptores de N-Metil-D-Aspartato , Humanos , Heterozigoto , Homozigoto , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética
8.
J Pharmacol Exp Ther ; 381(1): 54-66, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35110392

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are tetrameric assemblies of two glutamate N-methyl-D-aspartate receptor subunits, GluN1 and two GluN2, that mediate excitatory synaptic transmission in the central nervous system. Four genes (GRIN2A-D) encode four distinct GluN2 subunits (GluN2A-D). Thus, NMDARs can be diheteromeric assemblies of two GluN1 plus two identical GluN2 subunits, or triheteromeric assemblies of two GluN1 subunits plus two different GluN2 subunits. An increasing number of de novo GRIN variants have been identified in patients with neurologic conditions and with GRIN2A and GRIN2B harboring the vast majority (> 80%) of variants in these cases. These variants produce a wide range of effects on NMDAR function depending upon its subunit subdomain location and additionally on the subunit composition of diheteromeric versus triheteromeric NMDARs. Increasing evidence implicates triheteromeric GluN1/GluN2A/GluN2B receptors as a major component of the NMDAR pool in the adult cortex and hippocampus. Here, we explore the ability of GluN2A- and GluN2B-selective inhibitors to reduce excess current flow through triheteromeric GluN1/GluN2A/GluN2B receptors that contain one copy of GRIN2A or GRIN2B gain-of-function variants. Our data reveal a broad range of sensitivities for variant-containing triheteromeric receptors to subunit-selective inhibitors, with some variants still showing strong sensitivity to inhibitors, whereas others are relatively insensitive. Most variants, however, retain sensitivity to non-selective channel blockers and the competitive antagonist D-(-)-2-amino-5-phosphonopentanoic acid. These results suggest that with comprehensive analysis, certain disease-related GRIN2A and GRIN2B variants can be identified as potential targets for subunit-selective modulation and potential therapeutic gain. SIGNIFICANCE STATEMENT: Triheteromeric NMDA receptors that contain one copy each of the GluN2A and GluN2B subunits show intermediate sensitivity to GluN2A- and GluN2B-selective inhibitors, making these compounds candidates for attenuating overactive, GRIN variant-containing NMDA receptors associated with neurological conditions. We show that functional evaluation of variant properties with inhibitor pharmacology can support selection of a subset of variants for which GluN2 subunit-selective agents remain effective inhibitors of variant-containing triheteromeric NMDA receptors.


Assuntos
Mutação com Ganho de Função , Receptores de N-Metil-D-Aspartato , Hipocampo/metabolismo , Humanos , Transmissão Sináptica
9.
Epilepsia ; 63(10): e132-e137, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35983985

RESUMO

We report on an 8-year-old girl with severe developmental and epileptic encephalopathy due to the compound heterozygous null variants p.(Gln661*) and p.(Leu830Profs*2) in GRIN2A resulting in a knockout of the human GluN2A subunit of the N-methyl-D-aspartate receptor. Both parents had less severe GRIN2A-related phenotypes and were heterozygous carriers of the respective null variant. Functional investigations of both variants suggested a loss-of-function effect. This is the first description of an autosomal recessive, biallelic type of GRIN2A-related disorder. Nonetheless, there are marked parallels to two previously published families with severe epileptic encephalopathy due to homozygous null variants in GRIN1 as well as various knockout animal models. Compared to heterozygous null variants, biallelic knockout of either GluN1 or GluN2A is associated with markedly more severe phenotypes in both humans and mice. Furthermore, recent findings enable a potential precision medicine approach targeting GRIN-related disorders due to null variants.


Assuntos
Epilepsia Generalizada , Transtornos Mentais , Animais , Criança , Feminino , Humanos , Camundongos , Fenótipo , Receptores de N-Metil-D-Aspartato/genética
10.
Proc Natl Acad Sci U S A ; 116(11): 5160-5169, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30796190

RESUMO

Preclinical studies indicate that (2R,6R)-hydroxynorketamine (HNK) is a putative fast-acting antidepressant candidate. Although inhibition of NMDA-type glutamate receptors (NMDARs) is one mechanism proposed to underlie ketamine's antidepressant and adverse effects, the potency of (2R,6R)-HNK to inhibit NMDARs has not been established. We used a multidisciplinary approach to determine the effects of (2R,6R)-HNK on NMDAR function. Antidepressant-relevant behavioral responses and (2R,6R)-HNK levels in the extracellular compartment of the hippocampus were measured following systemic (2R,6R)-HNK administration in mice. The effects of ketamine, (2R,6R)-HNK, and, in some cases, the (2S,6S)-HNK stereoisomer were evaluated on the following: (i) NMDA-induced lethality in mice, (ii) NMDAR-mediated field excitatory postsynaptic potentials (fEPSPs) in the CA1 field of mouse hippocampal slices, (iii) NMDAR-mediated miniature excitatory postsynaptic currents (mEPSCs) and NMDA-evoked currents in CA1 pyramidal neurons of rat hippocampal slices, and (iv) recombinant NMDARs expressed in Xenopus oocytes. While a single i.p. injection of 10 mg/kg (2R,6R)-HNK exerted antidepressant-related behavioral and cellular responses in mice, the ED50 of (2R,6R)-HNK to prevent NMDA-induced lethality was found to be 228 mg/kg, compared with 6.4 mg/kg for ketamine. The 10 mg/kg (2R,6R)-HNK dose generated maximal hippocampal extracellular concentrations of ∼8 µM, which were well below concentrations required to inhibit synaptic and extrasynaptic NMDARs in vitro. (2S,6S)-HNK was more potent than (2R,6R)-HNK, but less potent than ketamine at inhibiting NMDARs. These data demonstrate the stereoselectivity of NMDAR inhibition by (2R,6R;2S,6S)-HNK and support the conclusion that direct NMDAR inhibition does not contribute to antidepressant-relevant effects of (2R,6R)-HNK.


Assuntos
Antidepressivos/farmacologia , Ketamina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Concentração Inibidora 50 , Ketamina/administração & dosagem , Ketamina/química , Masculino , Camundongos , N-Metilaspartato/metabolismo , Subunidades Proteicas/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Ratos , Xenopus laevis
11.
J Pharmacol Exp Ther ; 379(1): 41-52, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34493631

RESUMO

We describe a clinical candidate molecule from a new series of glutamate N-methyl-d-aspartate receptor subunit 2B-selective inhibitors that shows enhanced inhibition at extracellular acidic pH values relative to physiologic pH. This property should render these compounds more effective inhibitors of N-methyl-d-aspartate receptors at synapses responding to a high frequency of action potentials, since glutamate-containing vesicles are acidic within their lumen. In addition, acidification of penumbral regions around ischemic tissue should also enhance selective drug action for improved neuroprotection. The aryl piperazine we describe here shows strong neuroprotective actions with minimal side effects in preclinical studies. The clinical candidate molecule NP10679 has high oral bioavailability with good brain penetration and is suitable for both intravenous and oral dosing for therapeutic use in humans. SIGNIFICANCE STATEMENT: This study identifies a new series of glutamate N-methyl-d-aspartate (NMDA) receptor subunit 2B-selective negative allosteric modulators with properties appropriate for clinical advancement. The compounds are more potent at acidic pH, associated with ischemic tissue, and this property should increase the therapeutic safety of this class by improving efficacy in affected tissue while sparing NMDA receptor block in healthy brain.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Ácidos , Administração Oral , Animais , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Feminino , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Xenopus laevis
12.
Brain ; 143(7): 2039-2057, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32577763

RESUMO

NMDA receptors play crucial roles in excitatory synaptic transmission. Rare variants in GRIN2A encoding the GluN2A subunit are associated with a spectrum of disorders, ranging from mild speech and language delay to intractable neurodevelopmental disorders, including but not limited to developmental and epileptic encephalopathy. A de novo missense variant, p.Ser644Gly, was identified in a child with this disorder, and Grin2a knock-in mice were generated to model and extend understanding of this intractable childhood disease. Homozygous and heterozygous mutant mice exhibited altered hippocampal morphology at 2 weeks of age, and all homozygotes exhibited lethal tonic-clonic seizures by mid-third week. Heterozygous adults displayed susceptibility to induced generalized seizures, hyperactivity, repetitive and reduced anxiety behaviours, plus several unexpected features, including significant resistance to electrically-induced limbic seizures and to pentylenetetrazole induced tonic-clonic seizures. Multielectrode recordings of neuronal networks revealed hyperexcitability and altered bursting and synchronicity. In heterologous cells, mutant receptors had enhanced NMDA receptor agonist potency and slow deactivation following rapid removal of glutamate, as occurs at synapses. NMDA receptor-mediated synaptic currents in heterozygous hippocampal slices also showed a prolonged deactivation time course. Standard anti-epileptic drug monotherapy was ineffective in the patient. Introduction of NMDA receptor antagonists was correlated with a decrease in seizure burden. Chronic treatment of homozygous mouse pups with NMDA receptor antagonists significantly delayed the onset of lethal seizures but did not prevent them. These studies illustrate the power of using multiple experimental modalities to model and test therapies for severe neurodevelopmental disorders, while revealing significant biological complexities associated with GRIN2A developmental and epileptic encephalopathy.


Assuntos
Modelos Animais de Doenças , Epilepsia Generalizada/tratamento farmacológico , Epilepsia Generalizada/genética , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Receptores de N-Metil-D-Aspartato/genética , Animais , Dextrometorfano/uso terapêutico , Epilepsia Generalizada/patologia , Técnicas de Introdução de Genes , Humanos , Lactente , Masculino , Memantina/uso terapêutico , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia
13.
J Physiol ; 598(15): 3071-3083, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32468591

RESUMO

Glutamate receptors are essential ligand-gated ion channels in the central nervous system that mediate excitatory synaptic transmission in response to the release of glutamate from presynaptic terminals. The structural and biophysical basis underlying the function of these receptors has been studied for decades by a wide range of approaches. However recent structural, pharmacological and genetic studies have provided new insight into the regions of this protein that are critical determinants of receptor function. Lack of variation in specific areas of the protein amino acid sequences in the human population has defined three regions in each receptor subunit that are under selective pressure, which has focused research efforts and driven new hypotheses. In addition, these three closely positioned elements reside near a cavity that is shown by multiple studies to be a likely site of action for allosteric modulators, one of which is currently in use as an FDA-approved anticonvulsant. These structural elements are capable of controlling gating of the pore, and appear to permit some modulators bound within the cavity to also alter permeation properties. This creates a new precedent whereby features of the channel pore can be modulated by exogenous drugs that bind outside the pore. The convergence of structural, genetic, biophysical and pharmacological approaches is a powerful means to gain insight into the complex biological processes defined by neurotransmitter receptor function.


Assuntos
Distinções e Prêmios , Canais Iônicos de Abertura Ativada por Ligante , Fenômenos Biofísicos , Ácido Glutâmico , Humanos , Receptores de Glutamato
14.
Mov Disord ; 35(7): 1224-1232, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32369665

RESUMO

BACKGROUND: Hemizygous mutations in GRIA3 encoding the GluA3 subunit of the amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor are known to be associated with neurodevelopmental disorders, including intellectual disability, hypotonia, an autism spectrum disorder, sleep disturbances, and epilepsy in males. OBJECTIVE: To describe a new and consistent phenotype in 4 affected male patients associated with an undescribed deleterious variant in GRIA3. METHODS: We evaluated a large French family in which segregate a singular phenotype according to an apparent X-linked mode of inheritance. Molecular analyses using next generation sequencing and in vitro functional studies using 2-electrode voltage clamp recordings on Xenopus laevis oocytes and a ß-lactamase reporter assay in transfected human embryonic kidney (HEK293) cells were performed. RESULTS: In addition to mild intellectual disability and dysarthria, affected patients presented a tightly consistent early-onset movement disorder combining an exaggerated startle reflex with generalized chorea and multifocal myoclonus. The unreported GRIA3 missense variant c.2477G > A; p.(Gly826Asp) affecting the fourth transmembrane domain of the protein was identified in index patients and their unaffected mothers. Functional studies revealed that variant receptors show decreased current response evoked by agonist (ie, kainic acid and glutamate) and reduced expression on the cell surface in favor of pathogenicity by a loss-of-function mechanism. CONCLUSIONS: Taken together, our results suggest that apart from known GRIA3-related disorders, an undescribed mutation-specific singular movement disorder does exist. We thus advocate considering GRIA3 mutations in the differential diagnosis of hyperekplexia and generalized chorea with myoclonus. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Transtorno do Espectro Autista , Coreia , Mioclonia , Células HEK293 , Humanos , Masculino , Mioclonia/genética , Reflexo de Sobressalto
15.
Brain ; 142(10): 3009-3027, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504254

RESUMO

N-methyl d-aspartate receptors are ligand-gated ionotropic receptors mediating a slow, calcium-permeable component of excitatory synaptic transmission in the CNS. Variants in genes encoding NMDAR subunits have been associated with a spectrum of neurodevelopmental disorders. Here we report six novel GRIN2D variants and one previously-described disease-associated GRIN2D variant in two patients with developmental and epileptic encephalopathy. GRIN2D encodes for the GluN2D subunit protein; the GluN2D amino acids affected by the variants in this report are located in the pre-M1 helix, transmembrane domain M3, and the intracellular carboxyl terminal domain. Functional analysis in vitro reveals that all six variants decreased receptor surface expression, which may underline some shared clinical symptoms. In addition the GluN2D(Leu670Phe), (Ala675Thr) and (Ala678Asp) substitutions confer significantly enhanced agonist potency, and/or increased channel open probability, while the GluN2D(Ser573Phe), (Ser1271Phe) and (Arg1313Trp) substitutions result in a mild increase of agonist potency, reduced sensitivity to endogenous protons, and decreased channel open probability. The GluN2D(Ser573Phe), (Ala675Thr), and (Ala678Asp) substitutions significantly decrease current amplitude, consistent with reduced surface expression. The GluN2D(Leu670Phe) variant slows current response deactivation time course and increased charge transfer. GluN2D(Ala678Asp) transfection significantly decreased cell viability of rat cultured cortical neurons. In addition, we evaluated a set of FDA-approved NMDAR channel blockers to rescue functional changes of mutant receptors. This work suggests the complexity of the pathological mechanisms of GRIN2D-mediated developmental and epileptic encephalopathy, as well as the potential benefit of precision medicine.


Assuntos
Epilepsia Generalizada/genética , Receptores de N-Metil-D-Aspartato/genética , Adulto , Sequência de Aminoácidos/genética , Animais , Criança , Pré-Escolar , Epilepsia Generalizada/fisiopatologia , Feminino , Regulação da Expressão Gênica/genética , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Masculino , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/genética
16.
Hum Mutat ; 40(12): 2393-2413, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31429998

RESUMO

N-methyl-D-aspartate receptors (NMDARs) mediate slow excitatory postsynaptic transmission in the central nervous system, thereby exerting a critical role in neuronal development and brain function. Rare genetic variants in the GRIN genes encoding NMDAR subunits segregated with neurological disorders. Here, we summarize the clinical presentations for 18 patients harboring 12 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M2 re-entrant loop, a region that lines the pore and is intolerant to missense variation. These de novo variants were identified in children with a set of neurological and neuropsychiatric conditions. Evaluation of the receptor cell surface expression, pharmacological properties, and biophysical characteristics show that these variants can have modest changes in agonist potency, proton inhibition, and surface expression. However, voltage-dependent magnesium inhibition is significantly reduced in all variants. The NMDARs hosting a single copy of a mutant subunit showed a dominant reduction in magnesium inhibition for some variants. These variant NMDARs also show reduced calcium permeability and single-channel conductance, as well as altered open probability. The data suggest that M2 missense variants increase NMDAR charge transfer in addition to varied and complex influences on NMDAR functional properties, which may underlie the patients' phenotypes.


Assuntos
Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Doenças do Sistema Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética , Animais , Criança , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Fenótipo , Conformação Proteica , Receptores de N-Metil-D-Aspartato/química , Xenopus laevis
17.
Mov Disord ; 33(6): 992-999, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29644724

RESUMO

BACKGROUND: Mutations in the GRIN2A gene, which encodes the GluN2A (glutamate [NMDA] receptor subunit epsilon-1) subunit of the N-methyl-d-aspartate receptor, have been identified in patients with epilepsy-aphasia spectrum disorders, idiopathic focal epilepsies with centrotemporal spikes, and epileptic encephalopathies with severe developmental delay. However, thus far, mutations in this gene have not been associated with a nonepileptic neurodevelopmental disorder with dystonia. OBJECTIVES: The objective of this study was to identify the disease-causing gene in 2 siblings with neurodevelopmental and movement disorders with no epileptiform abnormalities. METHODS: The study method was targeted next-generation sequencing panel for neuropediatric disorders and subsequent electrophysiological studies. RESULTS: The 2 siblings carry a novel missense mutation in the GRIN2A gene (p.Ala643Asp) that was not detected in genomic DNA isolated from blood cells of their parents, suggesting that the mutation is the consequence of germinal mosaicism in 1 progenitor. In functional studies, the GluN2A-A643D mutation increased the potency of the agonists L-glutamate and glycine and decreased the potency of endogenous negative modulators, including protons, magnesium and zinc but reduced agonist-evoked peak current response in mammalian cells, suggesting that this mutation has a mixed effect on N-methyl-d-aspartate receptor function. CONCLUSION: De novo GRIN2A mutations can give rise to a neurodevelopmental and movement disorder without epilepsy. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Receptores de N-Metil-D-Aspartato/genética , Animais , Criança , Pré-Escolar , Análise Mutacional de DNA , Relação Dose-Resposta a Droga , Saúde da Família , Feminino , Ácido Glutâmico/farmacologia , Glicina/farmacologia , Humanos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Modelos Moleculares , Oócitos , Receptores de N-Metil-D-Aspartato/metabolismo , Transfecção , Xenopus laevis
18.
J Pharmacol Sci ; 132(2): 115-121, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27818011

RESUMO

The development of whole exome/genome sequencing technologies has given rise to an unprecedented volume of data linking patient genomic variability to brain disorder phenotypes. A surprising number of variants have been found in the N-methyl-d-aspartate receptor (NMDAR) gene family, with the GRIN2B gene encoding the GluN2B subunit being implicated in many cases of neurodevelopmental disorders, which are psychiatric conditions originating in childhood and include language, motor, and learning disorders, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), developmental delay, epilepsy, and schizophrenia. The GRIN2B gene plays a crucial role in normal neuronal development and is important for learning and memory. Mutations in human GRIN2B were distributed throughout the entire gene in a number of patients with various neuropsychiatric and developmental disorders. Studies that provide functional analysis of variants are still lacking, however current analysis of de novo variants that segregate with disease cases such as intellectual disability, developmental delay, ASD or epileptic encephalopathies reveal altered NMDAR function. Here, we summarize the current reports of disease-associated variants in GRIN2B from patients with multiple neurodevelopmental disorders, and discuss implications, highlighting the importance of functional analysis and precision medicine therapies.


Assuntos
Variação Genética/genética , Transtornos do Neurodesenvolvimento/genética , Receptores de N-Metil-D-Aspartato/genética , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Humanos , Transtornos do Neurodesenvolvimento/diagnóstico , Estrutura Secundária de Proteína , Receptores de N-Metil-D-Aspartato/química
19.
Neurocrit Care ; 20(1): 119-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24420693

RESUMO

BACKGROUND: Despite intensive research, neurological morbidity from delayed cerebral ischemia remains common after aneurysmal subarachnoid hemorrhage (SAH). In the current study, we evaluate the neuroprotective effects of a pH-dependent GluN2B subunit-selective NMDA receptor antagonist in a murine model of SAH. METHODS: Following induction of SAH, 12 ± 2 week old male C57-BL/6 mice received NP10075, a pH-dependent NMDA receptor antagonist, or vehicle. In a separate series of experiments, NP10075 and the non-pH sensitive NMDA antagonist, NP10191, were administered to normoglycemic and hyperglycemic mice. Both histological (right middle cerebral artery diameter, NeuN, and Fluoro-Jade B staining) and functional endpoints (rotarod latency and neuroseverity score) were evaluated to assess the therapeutic benefit of NP10075. RESULTS: Administration of NP10075 was well tolerated and had minimal hemodynamic effects following SAH. Administration of the pH-sensitive NMDA antagonist NP10075, but not NP10191, was associated with a durable improvement in the functional performance of both normoglycemic and hyperglycemic animals. NP10075 was also associated with a reduction in vasospasm in the middle cerebral artery associated with hemorrhage. There was no significant difference between treatment with nimodipine + NP10075, as compared to NP10075 alone. CONCLUSIONS: These data demonstrate that use of a pH-dependent NMDA antagonist has the potential to work selectively in areas of ischemia known to undergo acidic pH shifts, and thus may be associated with selective regional efficacy and fewer behavioral side effects than non-selective NMDA antagonists.


Assuntos
Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Hemorragia Subaracnóidea/tratamento farmacológico , Animais , Comportamento Animal/fisiologia , Bloqueadores dos Canais de Cálcio/farmacologia , Modelos Animais de Doenças , Concentração de Íons de Hidrogênio , Hiperglicemia/induzido quimicamente , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nimodipina/farmacologia , Distribuição Aleatória , Hemorragia Subaracnóidea/complicações
20.
medRxiv ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38766179

RESUMO

Genetic variants in genes GRIN1 , GRIN2A , GRIN2B , and GRIN2D , which encode subunits of the N-methyl-D-aspartate receptor (NMDAR), have been associated with severe and heterogeneous neurologic diseases. Missense variants in these genes can result in gain or loss of the NMDAR function, requiring opposite therapeutic treatments. Computational methods that predict pathogenicity and molecular functional effects are therefore crucial for accurate diagnosis and therapeutic applications. We assembled missense variants: 201 from patients, 631 from general population, and 159 characterized by electrophysiological readouts showing whether they can enhance or reduce the receptor function. This includes new functional data from 47 variants reported here, for the first time. We found that pathogenic/benign variants and variants that increase/decrease the channel function were distributed unevenly on the protein structure, with spatial proximity to ligands bound to the agonist and antagonist binding sites being key predictive features. Leveraging distances from ligands, we developed two independent machine learning-based predictors for NMDAR missense variants: a pathogenicity predictor which outperforms currently available predictors (AUC=0.945, MCC=0.726), and the first binary predictor of molecular function (increase or decrease) (AUC=0.809, MCC=0.523). Using these, we reclassified variants of uncertain significance in the ClinVar database and refined a previous genome-informed epidemiological model to estimate the birth incidence of molecular mechanism-defined GRIN disorders. Our findings demonstrate that distance from ligands is an important feature in NMDARs that can enhance variant pathogenicity prediction and enable functional prediction. Further studies with larger numbers of phenotypically and functionally characterized variants will enhance the potential clinical utility of this method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA