Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; 53(2): 1348-1359, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34936564

RESUMO

This article presents a comprehensive approach for time-series classification. The proposed model employs a fuzzy cognitive map (FCM) as a classification engine. Preprocessed input data feed the employed FCM. Map responses, after a postprocessing procedure, are used in the calculation of the final classification decision. The time-series data are staged using the moving-window technique to capture the time flow in the training procedure. We use a backward error propagation algorithm to compute the required model hyperparameters. Four model hyperparameters require tuning. Two are crucial for the model construction: 1) FCM size (number of concepts) and 2) window size (for the moving-window technique). Other two are important for training the model: 1) the number of epochs and 2) the learning rate (for training). Two distinguishing aspects of the proposed model are worth noting: 1) the separation of the classification engine from pre- and post-processing and 2) the time flow capture for data from concept space. The proposed classifier joins the key advantage of the FCM model, which is the interpretability of the model, with the superior classification performance attributed to the specially designed pre- and postprocessing stages. This article presents the experiments performed, demonstrating that the proposed model performs well against a wide range of state-of-the-art time-series classification algorithms.

2.
IEEE Trans Cybern ; 53(10): 6083-6094, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35476562

RESUMO

Machine-learning solutions for pattern classification problems are nowadays widely deployed in society and industry. However, the lack of transparency and accountability of most accurate models often hinders their safe use. Thus, there is a clear need for developing explainable artificial intelligence mechanisms. There exist model-agnostic methods that summarize feature contributions, but their interpretability is limited to predictions made by black-box models. An open challenge is to develop models that have intrinsic interpretability and produce their own explanations, even for classes of models that are traditionally considered black boxes like (recurrent) neural networks. In this article, we propose a long-term cognitive network (LTCN) for interpretable pattern classification of structured data. Our method brings its own mechanism for providing explanations by quantifying the relevance of each feature in the decision process. For supporting the interpretability without affecting the performance, the model incorporates more flexibility through a quasi-nonlinear reasoning rule that allows controlling nonlinearity. Besides, we propose a recurrence-aware decision model that evades the issues posed by the unique fixed point while introducing a deterministic learning algorithm to compute the tunable parameters. The simulations show that our interpretable model obtains competitive results when compared to state-of-the-art white and black-box models.

3.
IEEE Trans Cybern ; 52(5): 2994-3005, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33027021

RESUMO

Fuzzy-rough cognitive networks (FRCNs) are recurrent neural networks (RNNs) intended for structured classification purposes in which the problem is described by an explicit set of features. The advantage of this granular neural system relies on its transparency and simplicity while being competitive to state-of-the-art classifiers. Despite their relative empirical success in terms of prediction rates, there are limited studies on FRCNs' dynamic properties and how their building blocks contribute to the algorithm's performance. In this article, we theoretically study these issues and conclude that boundary and negative neurons always converge to a unique fixed-point attractor. Moreover, we demonstrate that negative neurons have no impact on the algorithm's performance and that the ranking of positive neurons is invariant. Moved by our theoretical findings, we propose two simpler fuzzy-rough classifiers that overcome the detected issues and maintain the competitive prediction rates of this classifier. Toward the end, we present a case study concerned with image classification, in which a convolutional neural network is coupled with one of the simpler models derived from the theoretical analysis of the FRCN model. The numerical simulations suggest that once the features have been extracted, our granular neural system performs as well as other RNNs.


Assuntos
Lógica Fuzzy , Redes Neurais de Computação , Cognição , Modelos Teóricos , Neurônios
4.
PeerJ Comput Sci ; 8: e1078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262149

RESUMO

FCMpy is an open-source Python module for building and analyzing Fuzzy Cognitive Maps (FCMs). The module provides tools for end-to-end projects involving FCMs. It is able to derive fuzzy causal weights from qualitative data or simulating the system behavior. Additionally, it includes machine learning algorithms (e.g., Nonlinear Hebbian Learning, Active Hebbian Learning, Genetic Algorithms, and Deterministic Learning) to adjust the FCM causal weight matrix and to solve classification problems. Finally, users can easily implement scenario analysis by simulating hypothetical interventions (i.e., analyzing what-if scenarios). FCMpy is the first open-source module that contains all the functionalities necessary for FCM oriented projects. This work aims to enable researchers from different areas, such as psychology, cognitive science, or engineering, to easily and efficiently develop and test their FCM models without the need for extensive programming knowledge.

5.
Neural Netw ; 140: 39-48, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33744712

RESUMO

This paper presents a neural system to deal with multi-label classification problems that might involve sparse features. The architecture of this model involves three sequential blocks with well-defined functions. The first block consists of a multilayered feed-forward structure that extracts hidden features, thus reducing the problem dimensionality. This block is useful when dealing with sparse problems. The second block consists of a Long-term Cognitive Network-based model that operates on features extracted by the first block. The activation rule of this recurrent neural network is modified to prevent the vanishing of the input signal during the recurrent inference process. The modified activation rule combines the neurons' state in the previous abstract layer (iteration) with the initial state. Moreover, we add a bias component to shift the transfer functions as needed to obtain good approximations. Finally, the third block consists of an output layer that adapts the second block's outputs to the label space. We propose a backpropagation learning algorithm that uses a squared hinge loss function to maximize the margins between labels to train this network. The results show that our model outperforms the state-of-the-art algorithms in most datasets.


Assuntos
Redes Neurais de Computação , Classificação/métodos , Conjuntos de Dados como Assunto
6.
IEEE Trans Cybern ; 51(2): 686-695, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31107673

RESUMO

Modeling a real-world system by means of a neural model involves numerous challenges that range from formulating transparent knowledge representations to obtaining reliable simulation errors. However, that knowledge is often difficult to formalize in a precise way using crisp numbers. In this paper, we present the long-term grey cognitive networks which expands the recently proposed long-term cognitive networks (LTCNs) with grey numbers. One advantage of our neural system is that it allows embedding knowledge into the network using weights and constricted neurons. In addition, we propose two procedures to construct the network in situations where only historical data are available, and a regularization method that is coupled with a nonsynaptic backpropagation algorithm. The results have shown that our proposal outperforms the LTCN model and other state-of-the-art methods in terms of accuracy.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Aprendizado de Máquina Supervisionado , Algoritmos , Cognição/fisiologia , Humanos
7.
Neural Netw ; 124: 258-268, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32032855

RESUMO

Hybrid artificial intelligence deals with the construction of intelligent systems by relying on both human knowledge and historical data records. In this paper, we approach this problem from a neural perspective, particularly when modeling and simulating dynamic systems. Firstly, we propose a Fuzzy Cognitive Map architecture in which experts are requested to define the interaction among the input neurons. As a second contribution, we introduce a fast and deterministic learning rule to compute the weights among input and output neurons. This parameterless learning method is based on the Moore-Penrose inverse and it can be performed in a single step. In addition, we discuss a model to determine the relevance of weights, which allows us to better understand the system. Last but not least, we introduce two calibration methods to adjust the model after the removal of potentially superfluous weights.


Assuntos
Aprendizado de Máquina , Lógica Fuzzy
8.
Neural Netw ; 115: 72-81, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30974303

RESUMO

While the machine learning literature dedicated to fully automated reasoning algorithms is abundant, the number of methods enabling the inference process on the basis of previously defined knowledge structures is scanter. Fuzzy Cognitive Maps (FCMs) are recurrent neural networks that can be exploited towards this goal because of their flexibility to handle external knowledge. However, FCMs suffer from a number of issues that range from the limited prediction horizon to the absence of theoretically sound learning algorithms able to produce accurate predictions. In this paper we propose a neural system named Short-term Cognitive Networks that tackle some of these limitations. In our model, used for regression and pattern completion, weights are not constricted and may have a causal nature or not. As a second contribution, we present a nonsynaptic learning algorithm to improve the network performance without modifying the previously defined weight matrix. Besides, we derive a stop condition to prevent the algorithm from iterating without significantly decreasing the global simulation error.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Lógica Fuzzy , Tempo
9.
Neural Netw ; 97: 19-27, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29045911

RESUMO

Rough Cognitive Networks (RCNs) are a kind of granular neural network that augments the reasoning rule present in Fuzzy Cognitive Maps with crisp information granules coming from Rough Set Theory. While RCNs have shown promise in solving different classification problems, this model is still very sensitive to the similarity threshold upon which the rough information granules are built. In this paper, we cast the RCN model within the framework of fuzzy rough sets in an attempt to eliminate the need for a user-specified similarity threshold while retaining the model's discriminatory power. As far as we know, this is the first study that brings fuzzy sets into the domain of rough cognitive mapping. Numerical results in the presence of 140 well-known pattern classification problems reveal that our approach, referred to as Fuzzy-Rough Cognitive Networks, is capable of outperforming most traditional classifiers used for benchmarking purposes. Furthermore, we explore the impact of using different heterogeneous distance functions and fuzzy operators over the performance of our granular neural network.


Assuntos
Cognição , Lógica Fuzzy , Redes Neurais de Computação , Algoritmos , Teorema de Bayes , Benchmarking , Simulação por Computador , Árvores de Decisões , Discriminação Psicológica , Modelos Teóricos , Reconhecimento Automatizado de Padrão , Resolução de Problemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA