Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(14): e2205202, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36634999

RESUMO

Thermoelectric technology, which has been receiving attention as a sustainable energy source, has limited applications because of its relatively low conversion efficiency. To broaden their application scope, thermoelectric materials require a high dimensionless figure of merit (ZT). Porous structuring of a thermoelectric material is a promising approach to enhance ZT by reducing its thermal conductivity. However, nanopores do not form in thermoelectric materials in a straightforward manner; impurities are also likely to be present in thermoelectric materials. Here, a simple but effective way to synthesize impurity-free nanoporous Bi0.4 Sb1.6 Te3 via the use of nanoporous raw powder, which is scalably formed by the selective dissolution of KCl after collision between Bi0.4 Sb1.6 Te3 and KCl powders, is proposed. This approach creates abundant nanopores, which effectively scatter phonons, thereby reducing the lattice thermal conductivity by 33% from 0.55 to 0.37 W m-1 K-1 . Benefitting from the optimized porous structure, porous Bi0.4 Sb1.6 Te3 achieves a high ZT of 1.41 in the temperature range of 333-373 K, and an excellent average ZT of 1.34 over a wide temperature range of 298-473 K. This study provides a facile and scalable method for developing high thermoelectric performance Bi2 Te3 -based alloys that can be further applied to other thermoelectric materials.

2.
Nat Commun ; 14(1): 5987, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752103

RESUMO

The underlying atomistic mechanism of deformation is a central problem in mechanics and materials science. Whereas deformation of crystalline metals is fundamentally understood, the understanding of deformation of amorphous metals lacks behind, particularly identifying the involved temporal and spatial scales. Here, we reveal that at small scales the size-dependent deformation behavior of amorphous metals significantly deviates from homogeneous flow, exhibiting increasing deformation rate with reducing size and gradually shifted composition. This transition suggests the deformation mechanism changes from collective atomic transport by viscous flow to individual atomic transport through interface diffusion. The critical length scale of the transition is temperature dependent, exhibiting a maximum at the glass transition. While viscous flow does not discriminate among alloy constituents, diffusion does and the constituent element with higher diffusivity deforms faster. Our findings yield insights into nano-mechanics and glass physics and may suggest alternative processing methods to epitaxially grow metallic glasses.

3.
Nat Commun ; 13(1): 6766, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351925

RESUMO

Chemical short-range order in disordered solid solutions often emerges with specific heat treatments. Unlike thermally activated ordering, mechanically derived short-range order (MSRO) in a multi-principal-element Fe40Mn40Cr10Co10 (at%) alloy originates from tensile deformation at 77 K, and its degree/extent can be tailored by adjusting the loading rates under quasistatic conditions. The mechanical response and multi-length-scale characterisation pointed to the minor contribution of MSRO formation to yield strength, mechanical twinning, and deformation-induced displacive transformation. Scanning and high-resolution transmission electron microscopy and the anlaysis of electron diffraction patterns revealed the microstructural features responsible for MSRO and the dependence of the ordering degree/extent on the applied strain rates. Here, we show that underpinned by molecular dynamics, MSRO in the alloys with low stacking-fault energies forms when loaded at 77 K, and these systems that offer different perspectives on the process of strain-induced ordering transition are driven by crystalline lattice defects (dislocations and stacking faults).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA