Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 95(8): 3940-3950, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36725678

RESUMO

Extracellular acidification indicates a metabolic shift in cancer cells and is, along with tissue hypoxia, a hallmark of tumor malignancy. Thus, non-invasive mapping of extracellular pH (pHe) is essential for researchers to understand the tumor microenvironment and to monitor tumor response to metabolism-targeting drugs. While electron paramagnetic resonance (EPR) has been successfully used to map pHe in mouse xenograft models, this method is not sensitive enough to map pHe with a moderate amount of exogenous pH-sensitive probes. Here, we show that a modified EPR system achieves twofold higher sensitivity by using the multiple harmonic detection (MHD) method and improves the robustness of pHe mapping in mouse xenograft models. Our results demonstrate that treatment of a mouse xenograft model of human-derived pancreatic ductal adenocarcinoma cells with the carbonic anhydrase IX (CAIX) inhibitor U-104 delays tumor growth with a concurrent tendency toward further extracellular acidification. We anticipate that EPR-based pHe mapping can be expanded to monitor the response of other metabolism-targeting drugs. Furthermore, pHe monitoring can also be used for the development of improved metabolism-targeting cancer treatments.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Antígenos de Neoplasias/metabolismo , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Microambiente Tumoral
2.
IEEE Trans Biomed Eng ; 65(5): 1124-1132, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28841547

RESUMO

OBJECTIVE: The purpose of this work was to develop an electronically tunable resonator operating at 750 MHz for continuous-wave electron paramagnetic resonance (CW-EPR) imaging of a mouse tumor-bearing leg. METHODS: The resonator had a multi-coil parallel-gap structure with a sample space of 16 mm in diameter and 20 mm in length. Microstrip line couplers were used in conjunction with varactor diodes to enable resonance frequency adjustment and to reduce the nonlinear effects of the varactor diodes. The resonator was modeled by the finite-element method and a microwave circuit simulation was performed to clarify its radiofrequency characteristics. RESULTS: A tunable resonator was evaluated in terms of its resonance frequency, tunable frequency band, and conversion efficiency of the RF magnetic field. The developed resonator provided a tunable frequency band of 4 MHz at a central frequency of 747 MHz and a conversion efficiency of 34 µT/W1/2. To demonstrate the application of this tunable resonator to EPR imaging, three-dimensional EPR images of a sample solution and a mouse tumor-bearing leg were obtained. CONCLUSION: The developed tunable resonator satisfied our initial requirements for in vivo EPR imaging and may be able to be further improved using the present finite-element and circuit models if any problems arise during future practical applications. SIGNIFICANCE: This work may help to promote EPR imaging of tumor-bearing mice in cancer-related studies.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Membro Posterior/diagnóstico por imagem , Imageamento Tridimensional/métodos , Neoplasias Experimentais/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Desenho de Equipamento , Masculino , Camundongos , Camundongos Endogâmicos C3H
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA