Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 169(5): 862-877.e17, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28502771

RESUMO

Herpes zoster (shingles) causes significant morbidity in immune compromised hosts and older adults. Whereas a vaccine is available for prevention of shingles, its efficacy declines with age. To help to understand the mechanisms driving vaccinal responses, we constructed a multiscale, multifactorial response network (MMRN) of immunity in healthy young and older adults immunized with the live attenuated shingles vaccine Zostavax. Vaccination induces robust antigen-specific antibody, plasmablasts, and CD4+ T cells yet limited CD8+ T cell and antiviral responses. The MMRN reveals striking associations between orthogonal datasets, such as transcriptomic and metabolomics signatures, cell populations, and cytokine levels, and identifies immune and metabolic correlates of vaccine immunity. Networks associated with inositol phosphate, glycerophospholipids, and sterol metabolism are tightly coupled with immunity. Critically, the sterol regulatory binding protein 1 and its targets are key integrators of antibody and T follicular cell responses. Our approach is broadly applicable to study human immunity and can help to identify predictors of efficacy as well as mechanisms controlling immunity to vaccination.


Assuntos
Vacina contra Herpes Zoster/imunologia , Imunidade Adaptativa , Adulto , Idoso , Envelhecimento , Formação de Anticorpos , Linfócitos T CD4-Positivos/imunologia , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Fosfatos de Inositol/imunologia , Estudos Longitudinais , Masculino , Metabolômica , Pessoa de Meia-Idade , Caracteres Sexuais , Esteróis/metabolismo , Carga Viral
2.
Nat Immunol ; 19(12): 1299-1308, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30374129

RESUMO

Colonization of the upper respiratory tract by pneumococcus is important both as a determinant of disease and for transmission into the population. The immunological mechanisms that contain pneumococcus during colonization are well studied in mice but remain unclear in humans. Loss of this control of pneumococcus following infection with influenza virus is associated with secondary bacterial pneumonia. We used a human challenge model with type 6B pneumococcus to show that acquisition of pneumococcus induced early degranulation of resident neutrophils and recruitment of monocytes to the nose. Monocyte function was associated with the clearance of pneumococcus. Prior nasal infection with live attenuated influenza virus induced inflammation, impaired innate immune function and altered genome-wide nasal gene responses to the carriage of pneumococcus. Levels of the cytokine CXCL10, promoted by viral infection, at the time pneumococcus was encountered were positively associated with bacterial load.


Assuntos
Coinfecção/imunologia , Influenza Humana/imunologia , Mucosa Nasal/imunologia , Infecções Pneumocócicas/imunologia , Quimiocina CXCL10/imunologia , Quimiotaxia de Leucócito/imunologia , Método Duplo-Cego , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Streptococcus pneumoniae
3.
Nat Immunol ; 22(10): 1199-1200, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34556875

Assuntos
HIV-1 , Vacinas
4.
Nat Immunol ; 17(10): 1226-34, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27525369

RESUMO

Antigen-specific B cells bifurcate into antibody-secreting cells (ASCs) and memory B cells (MBCs) after infection or vaccination. ASCs (plasmablasts) have been extensively studied in humans, but less is known about B cells that become activated but do not differentiate into plasmablasts. Here we have defined the phenotype and transcriptional program of a subset of antigen-specific B cells, which we have called 'activated B cells' (ABCs), that were distinct from ASCs and were committed to the MBC lineage. We detected ABCs in humans after infection with Ebola virus or influenza virus and also after vaccination. By simultaneously analyzing antigen-specific ASCs and ABCs in human blood after vaccination against influenza virus, we investigated the clonal overlap and extent of somatic hypermutation (SHM) in the ASC (effector) and ABC (memory) lineages. Longitudinal tracking of vaccination-induced hemagglutinin (HA)-specific clones revealed no overall increase in SHM over time, which suggested that repeated annual immunization might have limitations in enhancing the quality of influenza-virus-specific antibody.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/imunologia , Vírus da Influenza A/fisiologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Fator de Transcrição PAX5/metabolismo , Plasmócitos/imunologia , Adulto , Anticorpos Antivirais/sangue , Diferenciação Celular , Células Clonais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Memória Imunológica , Ativação Linfocitária , Hipermutação Somática de Imunoglobulina/genética , Vacinação , Adulto Jovem
5.
Nat Immunol ; 15(2): 195-204, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24336226

RESUMO

Many vaccines induce protective immunity via antibodies. Systems biology approaches have been used to determine signatures that can be used to predict vaccine-induced immunity in humans, but whether there is a 'universal signature' that can be used to predict antibody responses to any vaccine is unknown. Here we did systems analyses of immune responses to the polysaccharide and conjugate vaccines against meningococcus in healthy adults, in the broader context of published studies of vaccines against yellow fever virus and influenza virus. To achieve this, we did a large-scale network integration of publicly available human blood transcriptomes and systems-scale databases in specific biological contexts and deduced a set of transcription modules in blood. Those modules revealed distinct transcriptional signatures of antibody responses to different classes of vaccines, which provided key insights into primary viral, protein recall and anti-polysaccharide responses. Our results elucidate the early transcriptional programs that orchestrate vaccine immunity in humans and demonstrate the power of integrative network modeling.


Assuntos
Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Biologia de Sistemas/métodos , Adolescente , Adulto , Formação de Anticorpos/genética , Simulação por Computador , Feminino , Humanos , Imunidade Ativa , Imunoglobulinas/sangue , Vacinas contra Influenza/imunologia , Masculino , Infecções Meningocócicas/imunologia , Pessoa de Meia-Idade , Transcriptoma , Vacinas Conjugadas/imunologia , Vacina contra Febre Amarela/imunologia , Adulto Jovem
6.
Proc Natl Acad Sci U S A ; 120(41): e2221985120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782797

RESUMO

CD8 T cells play an essential role in antitumor immunity and chronic viral infections. Recent findings have delineated the differentiation pathway of CD8 T cells in accordance with the progenitor-progeny relationship of TCF1+ stem-like and Tim-3+TCF1- more differentiated T cells. Here, we investigated the characteristics of stem-like and differentiated CD8 T cells isolated from several murine tumor models and human lung cancer samples in terms of phenotypic and transcriptional features as well as their location compared to virus-specific CD8 T cells in the chronically lymphocytic choriomeningitis virus (LCMV)-infected mice. We found that CD8 tumor-infiltrating lymphocytes (TILs) in both murine and human tumors exhibited overall similar phenotypic and transcriptional characteristics compared to corresponding subsets in the spleen of chronically infected mice. Moreover, stem-like CD8 TILs exclusively responded and produced effector-like progeny CD8 T cells in vivo after antigenic restimulation, confirming their lineage relationship and the proliferative potential of stem-like CD8 TILs. Most importantly, similar to the preferential localization of PD-1+ stem-like CD8 T cells in T cell zones of the spleen during chronic LCMV infection, we found that the PD-1+ stem-like CD8 TILs in lung cancer samples are preferentially located not in the tumor parenchyma but in tertiary lymphoid structures (TLSs). The stem-like CD8 T cells are present in TLSs located within and at the periphery of the tumor, as well as in TLSs closely adjacent to the tumor parenchyma. These findings suggest that TLSs provide a protective niche to support the quiescence and maintenance of stem-like CD8 T cells in the tumor.


Assuntos
Neoplasias Pulmonares , Coriomeningite Linfocítica , Humanos , Animais , Camundongos , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos , Vírus da Coriomeningite Linfocítica , Infecção Persistente , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos C57BL
7.
Proc Natl Acad Sci U S A ; 120(21): e2217119120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186819

RESUMO

Occurrence of hyperglycemia upon infection is associated with worse clinical outcome in COVID-19 patients. However, it is still unknown whether SARS-CoV-2 directly triggers hyperglycemia. Herein, we interrogated whether and how SARS-CoV-2 causes hyperglycemia by infecting hepatocytes and increasing glucose production. We performed a retrospective cohort study including patients that were admitted at a hospital with suspicion of COVID-19. Clinical and laboratory data were collected from the chart records and daily blood glucose values were analyzed to test the hypothesis on whether COVID-19 was independently associated with hyperglycemia. Blood glucose was collected from a subgroup of nondiabetic patients to assess pancreatic hormones. Postmortem liver biopsies were collected to assess the presence of SARS-CoV-2 and its transporters in hepatocytes. In human hepatocytes, we studied the mechanistic bases of SARS-CoV-2 entrance and its gluconeogenic effect. SARS-CoV-2 infection was independently associated with hyperglycemia, regardless of diabetic history and beta cell function. We detected replicating viruses in human hepatocytes from postmortem liver biopsies and in primary hepatocytes. We found that SARS-CoV-2 variants infected human hepatocytes in vitro with different susceptibility. SARS-CoV-2 infection in hepatocytes yields the release of new infectious viral particles, though not causing cell damage. We showed that infected hepatocytes increase glucose production and this is associated with induction of PEPCK activity. Furthermore, our results demonstrate that SARS-CoV-2 entry in hepatocytes occurs partially through ACE2- and GRP78-dependent mechanisms. SARS-CoV-2 infects and replicates in hepatocytes and exerts a PEPCK-dependent gluconeogenic effect in these cells that potentially is a key cause of hyperglycemia in infected patients.


Assuntos
COVID-19 , Hiperglicemia , Humanos , COVID-19/complicações , SARS-CoV-2 , Gluconeogênese , Glicemia , Estudos Retrospectivos , Hepatócitos , Hiperglicemia/complicações , Glucose
8.
Stem Cells ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230167

RESUMO

Advanced bioinformatics analysis, such as systems biology (SysBio) and artificial intelligence (AI) approaches, including machine learning (ML) and deep learning (DL), is increasingly present in stem cell (SC) research. An approximate timeline on these developments and their global impact is still lacking. We conducted a scoping review on the contribution of SysBio and AI analysis to SC research and therapy development based on literature published in PubMed between 2000 and 2024. We identified an 8-10-fold increase in research output related to all three search terms between 2000 and 2021, with a 10-fold increase in AI-related production since 2010. Use of SysBio and AI still predominates in preclinical basic research with increasing use in clinically oriented translational medicine since 2010. SysBio- and AI-related research was found all over the globe, with SysBio output led by the United States (US, n=1487), United Kingdom (UK, n=1094), Germany (n=355), The Netherlands (n=339), Russia (n=215), and France (n=149), while for AI-related research the US (n=853) and UK (n=258) take a strong lead, followed by Switzerland (n=69), The Netherlands (n=37), and Germany (n=19). The US and UK are most active in SCs publications related to AI/ML and AI/DL. The prominent use of SysBio in ESC research was recently overtaken by prominent use of AI in iPSC and MSC research. This study reveals the global evolution and growing intersection between AI, SysBio, and SC research over the past two decades, with substantial growth in all three fields and exponential increases in AI-related research in the past decade.

9.
J Immunol ; 211(5): 721-726, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486206

RESUMO

CTL differentiation is controlled by the crosstalk of various transcription factors and epigenetic modulators. Uncovering this process is fundamental to improving immunotherapy and designing novel therapeutic approaches. In this study, we show that polycomb repressive complex 1 subunit chromobox (Cbx)4 favors effector CTL differentiation in a murine model. Cbx4 deficiency in CTLs induced a transcriptional signature of memory cells and increased the memory CTL population during acute viral infection. It has previously been shown that besides binding to H3K27me3 through its chromodomain, Cbx4 functions as a small ubiquitin-like modifier (SUMO) E3 ligase in a SUMO-interacting motifs (SIM)-dependent way. Overexpression of Cbx4 mutants in distinct domains showed that this protein regulates CTL differentiation primarily in an SIM-dependent way and partially through its chromodomain. Our data suggest a novel role of a polycomb group protein Cbx4 controlling CTL differentiation and indicated SUMOylation as a key molecular mechanism connected to chromatin modification in this process.


Assuntos
Complexo Repressor Polycomb 1 , Ubiquitina-Proteína Ligases , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
10.
Immunity ; 43(6): 1186-98, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26682988

RESUMO

Systems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans. Whether such signatures are similar across multiple seasons and in diverse populations is unknown. We applied systems approaches to study immune responses in young, elderly, and diabetic subjects vaccinated with the seasonal influenza vaccine across five consecutive seasons. Signatures of innate immunity and plasmablasts correlated with and predicted influenza antibody titers at 1 month after vaccination with >80% accuracy across multiple seasons but were not associated with the longevity of the response. Baseline signatures of lymphocyte and monocyte inflammation were positively and negatively correlated, respectively, with antibody responses at 1 month. Finally, integrative analysis of microRNAs and transcriptomic profiling revealed potential regulators of vaccine immunity. These results identify shared vaccine-induced signatures across multiple seasons and in diverse populations and might help guide the development of next-generation vaccines that provide persistent immunity against influenza.


Assuntos
Anticorpos Antivirais/genética , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Transcriptoma/imunologia , Adulto , Idoso , Anticorpos Antivirais/sangue , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Estações do Ano , Análise de Sistemas
11.
Semin Immunol ; 50: 101420, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-33162295

RESUMO

The structure and function of the immune system is governed by complex networks of interactions between cells and molecular components. Vaccination perturbs these networks, triggering specific pathways to induce cellular and humoral immunity. Systems vaccinology studies have generated vast data sets describing the genes related to vaccination, motivating the use of new approaches to identify patterns within the data. Here, we describe a framework called Network Vaccinology to explore the structure and function of biological networks responsible for vaccine-induced immunity. We demonstrate how the principles of graph theory can be used to identify modules of genes, proteins, and metabolites that are associated with innate and adaptive immune responses. Network vaccinology can be used to assess specific and shared molecular mechanisms of different types of vaccines, adjuvants, and routes of administration to direct rational design of the next generation of vaccines.


Assuntos
Vacinas/imunologia , Vacinologia/tendências , Animais , Redes Reguladoras de Genes , Humanos , Imunidade Celular , Imunidade Humoral , Biologia de Sistemas , Vacinação
12.
J Cell Mol Med ; 27(20): 3157-3167, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37731199

RESUMO

Septic shock is a life-threatening clinical condition characterized by a robust immune inflammatory response to disseminated infection. Little is known about its impact on the transcriptome of distinct human tissues. To address this, we performed RNA sequencing of samples from the prefrontal cortex, hippocampus, heart, lung, kidney and colon of seven individuals who succumbed to sepsis and seven uninfected controls. We identified that the lungs and colon were the most affected organs. While gene activation dominated, strong inhibitory signals were also detected, particularly in the lungs. We found that septic shock is an extremely heterogeneous disease, not only when different individuals are investigated, but also when comparing different tissues of the same patient. However, several pathways, such as respiratory electron transport and other metabolic functions, revealed distinctive alterations, providing evidence that tissue specificity is a hallmark of sepsis. Strikingly, we found evident signals of accelerated ageing in our sepsis population.

13.
Angiogenesis ; 26(1): 129-166, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36183032

RESUMO

Cancer cells are embedded within the tissue and interact dynamically with its components during cancer progression. Understanding the contribution of cellular components within the tumor microenvironment is crucial for the success of therapeutic applications. Here, we reveal the presence of perivascular GFAP+/Plp1+ cells within the tumor microenvironment. Using in vivo inducible Cre/loxP mediated systems, we demonstrated that these cells derive from tissue-resident Schwann cells. Genetic ablation of endogenous Schwann cells slowed down tumor growth and angiogenesis. Schwann cell-specific depletion also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of tumor biopsies revealed that increased expression of Schwann cell-related genes within melanoma was associated with improved survival. Collectively, our study suggests that Schwann cells regulate tumor progression, indicating that manipulation of Schwann cells may provide a valuable tool to improve cancer patients' outcomes.


Assuntos
Neoplasias , Neuroglia , Humanos , Estudos Retrospectivos , Neuroglia/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patologia , Pericitos , Microambiente Tumoral/fisiologia , Neoplasias/patologia
14.
Nat Immunol ; 12(8): 786-95, 2011 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-21743478

RESUMO

Here we have used a systems biology approach to study innate and adaptive responses to vaccination against influenza in humans during three consecutive influenza seasons. We studied healthy adults vaccinated with trivalent inactivated influenza vaccine (TIV) or live attenuated influenza vaccine (LAIV). TIV induced higher antibody titers and more plasmablasts than LAIV did. In subjects vaccinated with TIV, early molecular signatures correlated with and could be used to accurately predict later antibody titers in two independent trials. Notably, expression of the kinase CaMKIV at day 3 was inversely correlated with later antibody titers. Vaccination of CaMKIV-deficient mice with TIV induced enhanced antigen-specific antibody titers, which demonstrated an unappreciated role for CaMKIV in the regulation of antibody responses. Thus, systems approaches can be used to predict immunogenicity and provide new mechanistic insights about vaccines.


Assuntos
Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Orthomyxoviridae/imunologia , Imunidade Adaptativa/imunologia , Adolescente , Adulto , Animais , Anticorpos Antivirais/sangue , Perfilação da Expressão Gênica , Testes de Inibição da Hemaglutinação , Humanos , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Estações do Ano , Biologia de Sistemas/métodos , Vacinação/métodos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Adulto Jovem
15.
J Med Virol ; 95(2): e28450, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36597912

RESUMO

Several perturbations in the number of peripheral blood leukocytes, such as neutrophilia and lymphopenia associated with Coronavirus disease 2019 (COVID-19) severity, point to systemic molecular cell cycle alterations during severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, the landscape of cell cycle alterations in COVID-19 remains primarily unexplored. Here, we performed an integrative systems immunology analysis of publicly available proteome and transcriptome data to characterize global changes in the cell cycle signature of COVID-19 patients. We found significantly enriched cell cycle-associated gene co-expression modules and an interconnected network of cell cycle-associated differentially expressed proteins (DEPs) and genes (DEGs) by integrating the molecular data of 1469 individuals (981 SARS-CoV-2 infected patients and 488 controls [either healthy controls or individuals with other respiratory illnesses]). Among these DEPs and DEGs are several cyclins, cell division cycles, cyclin-dependent kinases, and mini-chromosome maintenance proteins. COVID-19 patients partially shared the expression pattern of some cell cycle-associated genes with other respiratory illnesses but exhibited some specific differential features. Notably, the cell cycle signature predominated in the patients' blood leukocytes (B, T, and natural killer cells) and was associated with COVID-19 severity and disease trajectories. These results provide a unique global understanding of distinct alterations in cell cycle-associated molecules in COVID-19 patients, suggesting new putative pathways for therapeutic intervention.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Transcriptoma , Células Matadoras Naturais , Ciclo Celular
16.
Ann Neurol ; 91(5): 652-669, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35226368

RESUMO

OBJECTIVE: Astrocytes play a significant role in the pathology of multiple sclerosis (MS). Nevertheless, for ethical reasons, most studies in these cells were performed using the Experimental Autoimmune Encephalomyelitis model. As there are significant differences between human and mouse cells, we aimed here to better characterize astrocytes from patients with MS (PwMS), focusing mainly on mitochondrial function and cell metabolism. METHODS: We obtained and characterized induced pluripotent stem cell (iPSC)-derived astrocytes from three PwMS and three unaffected controls, and performed electron microscopy, flow cytometry, cytokine and glutamate measurements, gene expression, in situ respiration, and metabolomics. We validated our findings using a single-nuclei RNA sequencing dataset. RESULTS: We detected several differences in MS astrocytes including: (i) enrichment of genes associated with neurodegeneration, (ii) increased mitochondrial fission, (iii) increased production of superoxide and MS-related proinflammatory chemokines, (iv) impaired uptake and enhanced release of glutamate, (v) increased electron transport capacity and proton leak, in line with the increased oxidative stress, and (vi) a distinct metabolic profile, with a deficiency in amino acid catabolism and increased sphingolipid metabolism, which have already been linked to MS. INTERPRETATION: Here we describe the metabolic profile of iPSC-derived astrocytes from PwMS and validate this model as a very powerful tool to study disease mechanisms and to perform non-invasive drug targeting assays in vitro. Our findings recapitulate several disease features described in patients and provide new mechanistic insights into the metabolic rewiring of astrocytes in MS, which could be targeted in future therapeutic studies. ANN NEUROL 2022;91:652-669.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esclerose Múltipla , Animais , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Esclerose Múltipla/patologia
17.
Blood ; 138(25): 2702-2713, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34407544

RESUMO

Multiple organ dysfunction is the most severe outcome of sepsis progression and is highly correlated with a worse prognosis. Excessive neutrophil extracellular traps (NETs) are critical players in the development of organ failure during sepsis. Therefore, interventions targeting NET release would likely effectively prevent NET-based organ injury associated with this disease. Herein, we demonstrate that the pore-forming protein gasdermin D (GSDMD) is active in neutrophils from septic humans and mice and plays a crucial role in NET release. Inhibition of GSDMD with disulfiram or genic deletion abrogated NET formation, reducing multiple organ dysfunction and sepsis lethality. Mechanistically, we demonstrate that during sepsis, activation of the caspase-11/GSDMD pathway controls NET release by neutrophils during sepsis. In summary, our findings uncover a novel therapeutic use for disulfiram and suggest that GSDMD is a therapeutic target to improve sepsis treatment.


Assuntos
Armadilhas Extracelulares/genética , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Insuficiência de Múltiplos Órgãos/genética , Proteínas de Ligação a Fosfato/genética , Sepse/genética , Inibidores de Acetaldeído Desidrogenases/uso terapêutico , Transferência Adotiva , Idoso , Animais , Células Cultivadas , Dissulfiram/uso terapêutico , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/patologia , Insuficiência de Múltiplos Órgãos/terapia , Proteínas de Ligação a Fosfato/antagonistas & inibidores , Sepse/patologia , Sepse/terapia
18.
Immunity ; 41(3): 478-492, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25220212

RESUMO

Systems biological analysis of immunity to the trivalent inactivated influenza vaccine (TIV) in humans revealed a correlation between early expression of TLR5 and the magnitude of the antibody response. Vaccination of Trl5(-/-) mice resulted in reduced antibody titers and lower frequencies of plasma cells, demonstrating a role for TLR5 in immunity to TIV. This was due to a failure to sense host microbiota. Thus, antibody responses in germ-free or antibiotic-treated mice were impaired, but restored by oral reconstitution with a flagellated, but not aflagellated, strain of E. coli. TLR5-mediated sensing of flagellin promoted plasma cell differentiation directly and by stimulating lymph node macrophages to produce plasma cell growth factors. Finally, TLR5-mediated sensing of the microbiota also impacted antibody responses to the inactivated polio vaccine, but not to adjuvanted vaccines or the live-attenuated yellow fever vaccine. These results reveal an unappreciated role for gut microbiota in promoting immunity to vaccination.


Assuntos
Formação de Anticorpos/imunologia , Vacinas contra Influenza/imunologia , Intestinos/microbiologia , Microbiota/imunologia , Receptor 5 Toll-Like/imunologia , Animais , Anticorpos Antivirais/sangue , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Escherichia coli/imunologia , Flagelina/imunologia , Humanos , Memória Imunológica/imunologia , Influenza Humana/prevenção & controle , Intestinos/imunologia , Linfonodos/citologia , Linfonodos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmócitos/imunologia , Plasmócitos/metabolismo , Vacina Antipólio de Vírus Inativado/imunologia , Transdução de Sinais/imunologia , Receptor 5 Toll-Like/biossíntese , Receptor 5 Toll-Like/genética , Vacina contra Febre Amarela/imunologia
19.
J Immunol ; 206(9): 2170-2183, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33863789

RESUMO

The transcriptional and epigenetic regulation of CD8+ T cell differentiation is critical for balancing pathogen eradication and long-term immunity by effector and memory CTLs, respectively. In this study, we demonstrate that the lysine demethylase 6b (Kdm6b) is essential for the proper generation and function of effector CD8+ T cells during acute infection and tumor eradication. We found that cells lacking Kdm6b (by either T cell-specific knockout mice or knockdown using short hairpin RNA strategies) show an enhanced generation of memory precursor and early effector cells upon acute viral infection in a cell-intrinsic manner. We also demonstrate that Kdm6b is indispensable for proper effector functions and tumor protection, and that memory CD8+ T cells lacking Kdm6b displayed a defective recall response. Mechanistically, we identified that Kdm6b, through induction of chromatin accessibility in key effector-associated gene loci, allows for the proper generation of effector CTLs. Our results pinpoint the essential function of Kdm6b in allowing chromatin accessibility in effector-associated genes, and identify Kdm6b as a potential target for therapeutics in diseases with dysregulated effector responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Cromatina/imunologia , Histona Desmetilases com o Domínio Jumonji/imunologia , Animais , Células Cultivadas , Cromatina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
20.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902104

RESUMO

Sézary syndrome (SS) is a rare and aggressive type of cutaneous T-cell lymphoma, with an abnormal inflammatory response in affected skin. The cytokines IL-1B and IL-18, as key signaling molecules in the immune system, are produced in an inactive form and cleave to the active form by inflammasomes. In this study, we assessed the skin, serum, peripheral mononuclear blood cell (PBMC) and lymph-node samples of SS patients and control groups (healthy donors (HDs) and idiopathic erythroderma (IE) nodes) to investigate the inflammatory markers IL-1B and IL-18 at the protein and transcript expression levels, as potential markers of inflammasome activation. Our findings showed increased IL-1B and decreased IL-18 protein expression in the epidermis of SS patients; however, in the dermis layer, we detected increased IL-18 protein expression. In the lymph nodes of SS patients at advanced stages of the disease (N2/N3), we also detected an enhancement of IL-18 and a downregulation of IL-1B at the protein level. Moreover, the transcriptomic analysis of the SS and IE nodes confirmed the decreased expression of IL1B and NLRP3, whereas the pathway analysis indicated a further downregulation of IL1B-associated genes. Overall, the present findings showed compartmentalized expressions of IL-1B and IL-18 and provided the first evidence of their imbalance in patients with Sézary syndrome.


Assuntos
Interleucina-18 , Síndrome de Sézary , Neoplasias Cutâneas , Humanos , Dermatite Esfoliativa/metabolismo , Inflamassomos/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Leucócitos Mononucleares/metabolismo , Síndrome de Sézary/metabolismo , Pele/metabolismo , Neoplasias Cutâneas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA