Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Image Anal ; 97: 103222, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38936222

RESUMO

Since the rise of deep learning, new medical segmentation methods have rapidly been proposed with extremely promising results, often reporting marginal improvements on the previous state-of-the-art (SOTA) method. However, on visual inspection errors are often revealed, such as topological mistakes (e.g. holes or folds), that are not detected using traditional evaluation metrics. Incorrect topology can often lead to errors in clinically required downstream image processing tasks. Therefore, there is a need for new methods to focus on ensuring segmentations are topologically correct. In this work, we present TEDS-Net: a segmentation network that preserves anatomical topology whilst maintaining segmentation performance that is competitive with SOTA baselines. Further, we show how current SOTA segmentation methods can introduce problematic topological errors. TEDS-Net achieves anatomically plausible segmentation by using learnt topology-preserving fields to deform a prior. Traditionally, topology-preserving fields are described in the continuous domain and begin to break down when working in the discrete domain. Here, we introduce additional modifications that more strictly enforce topology preservation. We illustrate our method on an open-source medical heart dataset, performing both single and multi-structure segmentation, and show that the generated fields contain no folding voxels, which corresponds to full topology preservation on individual structures whilst vastly outperforming the other baselines on overall scene topology. The code is available at: https://github.com/mwyburd/TEDS-Net.

2.
Med Image Anal ; 94: 103147, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547665

RESUMO

Three-dimensional (3D) ultrasound imaging has contributed to our understanding of fetal developmental processes by providing rich contextual information of the inherently 3D anatomies. However, its use is limited in clinical settings, due to the high purchasing costs and limited diagnostic practicality. Freehand 2D ultrasound imaging, in contrast, is routinely used in standard obstetric exams, but inherently lacks a 3D representation of the anatomies, which limits its potential for more advanced assessment. Such full representations are challenging to recover even with external tracking devices due to internal fetal movement which is independent from the operator-led trajectory of the probe. Capitalizing on the flexibility offered by freehand 2D ultrasound acquisition, we propose ImplicitVol to reconstruct 3D volumes from non-sensor-tracked 2D ultrasound sweeps. Conventionally, reconstructions are performed on a discrete voxel grid. We, however, employ a deep neural network to represent, for the first time, the reconstructed volume as an implicit function. Specifically, ImplicitVol takes a set of 2D images as input, predicts their locations in 3D space, jointly refines the inferred locations, and learns a full volumetric reconstruction. When testing natively-acquired and volume-sampled 2D ultrasound video sequences collected from different manufacturers, the 3D volumes reconstructed by ImplicitVol show significantly better visual and semantic quality than the existing interpolation-based reconstruction approaches. The inherent continuity of implicit representation also enables ImplicitVol to reconstruct the volume to arbitrarily high resolutions. As formulated, ImplicitVol has the potential to integrate seamlessly into the clinical workflow, while providing richer information for diagnosis and evaluation of the developing brain.


Assuntos
Algoritmos , Imageamento Tridimensional , Humanos , Feminino , Gravidez , Imageamento Tridimensional/métodos , Ultrassonografia/métodos , Ultrassonografia Pré-Natal , Encéfalo/diagnóstico por imagem
3.
Comput Biol Med ; 169: 107872, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160500

RESUMO

BACKGROUND: Despite knowledge of qualitative changes that occur on ultrasound in tendinopathy, there is currently no objective and reliable means to quantify the severity or prognosis of tendinopathy on ultrasound. OBJECTIVE: The primary objective of this study is to produce a quantitative and automated means of inferring potential structural changes in tendinopathy by developing and implementing an algorithm which performs a texture based segmentation of tendon ultrasound (US) images. METHOD: A model-based segmentation approach is used which combines Gaussian mixture models, Markov random field theory and grey-level co-occurrence (GLCM) features. The algorithm is trained and tested on 49 longitudinal B-mode ultrasound images of the Achilles tendons which are labelled as tendinopathic (24) or healthy (25). Hyperparameters are tuned, using a training set of 25 images, to optimise a decision tree based classification of the images from texture class proportions. We segment and classify the remaining test images using the decision tree. RESULTS: Our approach successfully detects a difference in the texture profiles of tendinopathic and healthy tendons, with 22/24 of the test images accurately classified based on a simple texture proportion cut-off threshold. Results for the tendinopathic images are also collated to gain insight into the topology of structural changes that occur with tendinopathy. It is evident that distinct textures, which are predominantly present in tendinopathic tendons, appear most commonly near the transverse boundary of the tendon, though there was a large variability among diseased tendons. CONCLUSION: The GLCM based segmentation of tendons under ultrasound resulted in distinct segmentations between healthy and tendinopathic tendons and provides a potential tool to objectively quantify damage in tendinopathy.


Assuntos
Tendão do Calcâneo , Tendinopatia , Humanos , Tendão do Calcâneo/química , Tendão do Calcâneo/diagnóstico por imagem , Ultrassonografia/métodos , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA