Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Vis ; 27: 151-160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33907370

RESUMO

PURPOSE: Recent reports linking HDAC6 to mitochondrial turnover and neurodegeneration led us to hypothesize that an inhibitor such as Vorinostat (suberoylanilide hydroxamic acid, SAHA) may reduce mitochondrial damage found in retinitis pigmentosa (RP), a progressive neurodegenerative disease of the eye. Here we tested the efficacy of SAHA for its ability to protect photoreceptors in in-vitro and in-situ models of RP. As the stressor, we focused on calcium overload. Calcium is one of the main drivers of cell death, and is associated with rod loss in the rd1 mouse retina, which harbors a mutation in the Pde6b gene similar to that found in human patients suffering from autosomal recessive RP. METHOD: Murine photoreceptor cell line (661W) were exposed to agents that led to calcium stress. Cell survival and redox capacity were measured using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, real-time changes in cellular metabolism were assessed using the Seahorse Biosciences XF24 analyzer, and mitochondrial fission-fusion using imaging. In-situ, neuroprotection was assessed in RPE/retina organ cultures of the rd1 mouse. SAHA effects on cell survival were compared in 661W cells with those of the specific HDAC6 inhibitor tubastatin A, and those on protein acetylation by Western blotting. RESULTS: In stressed 661W cells, SAHA was found to increase cell survival that was associated with improved mitochondrial respiration and reduced mitochondrial fission. The protective effects of SAHA were also observed on photoreceptor cell survival in whole retinal organ explants of the rd1 mouse. Even though tubastatin A was ineffective in increasing cell survival in 661W cells, HDAC6 activity was confirmed in 661W cells after SAHA treatment with protein acetylation specific for HDAC6, defined by an increase in tubulin, but not histone acetylation. CONCLUSIONS: SAHA was found to protect mitochondria from damage, and concomitantly reduced photoreceptor cell death in cell and organ cultures. The lack of activity of tubastatin A suggests that there must be an additional mechanism of action involved in the protective mechanism of SAHA that is responsible for its neuroprotection. Overall, SAHA may be a useful treatment for the prevention of photoreceptor degeneration associated with human RP. The results are discussed in the context of the effects of inhibitors that target different classes and members of the HDAC family and their effects on rod versus cone survival.


Assuntos
Modelos Animais de Doenças , Inibidores de Histona Desacetilases/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Retinose Pigmentar/tratamento farmacológico , Vorinostat/uso terapêutico , Animais , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/prevenção & controle , NADH NADPH Oxirredutases/metabolismo , Técnicas de Cultura de Órgãos , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia
2.
Adv Exp Med Biol ; 854: 449-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427445

RESUMO

One feature common to many of the pathways implicated in retinal degeneration is increased metabolic stress leading to impaired mitochondrial function. We found that exposure of cells to calcium ionophores or oxidants as metabolic stressors diminish maximal mitochondrial capacity. A library of 50,000 structurally diverse "drug-like" molecules was screened for protection against loss of calcium-induced loss of mitochondrial capacity in 661W rod-derived cells and C6 glioblastomas. Initial protective hits were then tested for protection against IBMX-induced loss of mitochondrial capacity as measured via respirometry. Molecules that protected mitochondria were then evaluated for protection of rod photoreceptor cells in retinal explants from rd1 mice. Two of the molecules attenuated loss of photoreceptor cells in the rd1 model. In the 661W cells, exposure to calcium ionophore or tert-butylhydroperoxide caused mitochondrial fragmentation that was blocked with the both compounds. Our studies have identified molecules that protect mitochondria and attenuate loss of photoreceptors in models of retinal degeneration suggesting that they could be good leads for development of therapeutic drugs for treatment of a wide variety of retinal dystrophies.


Assuntos
Mitocôndrias/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Retinose Pigmentar/prevenção & controle , Bibliotecas de Moléculas Pequenas/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Glicólise/efeitos dos fármacos , Camundongos Mutantes , Mitocôndrias/metabolismo , Técnicas de Cultura de Órgãos , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo
3.
Oncogene ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379700

RESUMO

The RAS family GTPases are the most frequently mutated oncogene family in human cancers. Activating mutations in either of the three RAS isoforms (HRAS, KRAS, or NRAS) are found in nearly 20% of all human tumors with NRAS mutated in ~25% of melanomas. Despite remarkable advancements in therapies targeted against mutant KRAS, NRAS-specific pharmacologics are lacking. Thus, development of inhibitors of NRAS would address a critical unmet need to treating primary tumors harboring NRAS mutations as well as BRAF-mutant melanomas, which frequently develop resistance to clinically approved BRAF inhibitors through NRAS mutation. Building upon our previous studies with the monobody NS1 that recognizes HRAS and KRAS but not NRAS, here we report the development of a monobody that specifically binds to both GDP and GTP-bound states of NRAS and inhibits NRAS-mediated signaling in a mutation-agnostic manner. Further, this monobody can be formatted into a genetically encoded NRAS-specific degrader. Our study highlights the feasibility of developing NRAS selective inhibitors for therapeutic efforts.

4.
Front Immunol ; 13: 830169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651620

RESUMO

Tumor-associated macrophages (TAMs) exert profound influence over breast cancer progression, promoting immunosuppression, angiogenesis, and metastasis. Neuropilin-2 (NRP2), consisting of the NRP2a and NRP2b isoforms, is a co-receptor for heparin-binding growth factors including VEGF-C and Class 3 Semaphorins. Selective upregulation in response to environmental stimuli and independent signaling pathways endow the NRP2 isoforms with unique functionality, with NRP2b promoting increased Akt signaling via receptor tyrosine kinases including VEGFRs, MET, and PDGFR. Although NRP2 has been shown to regulate macrophage/TAM biology, the role of the individual NRP2a/NRP2b isoforms in TAMs has yet to be evaluated. Using transcriptional profiling and spectral flow cytometry, we show that NRP2 isoform expression was significantly higher in TAMs from murine mammary tumors. NRP2a/NRP2b levels in human breast cancer metastasis were dependent upon the anatomic location of the tumor and significantly correlated with TAM infiltration in both primary and metastatic breast cancers. We define distinct phenotypes of NRP2 isoform-expressing TAMs in mouse models of breast cancer and within malignant pleural effusions from breast cancer patients which were exclusive of neuropilin-1 expression. Genetic depletion of either NRP2 isoform in macrophages resulted in a dramatic reduction of LPS-induced IL-10 production, defects in phagosomal processing of apoptotic breast cancer cells, and increase in cancer cell migration following co-culture. By contrast, depletion of NRP2b, but not NRP2a, inhibited production of IL-6. These results suggest that NRP2 isoforms regulate both shared and unique functionality in macrophages and are associated with distinct TAM subsets in breast cancer.


Assuntos
Neoplasias da Mama , Neuropilina-2 , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Camundongos , Neuropilina-1/genética , Neuropilina-2/genética , Neuropilina-2/metabolismo , Isoformas de Proteínas , Macrófagos Associados a Tumor
5.
Cancers (Basel) ; 13(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070758

RESUMO

Secreted frizzled-related protein 2 (SFRP2) promotes the migration/invasion of metastatic osteosarcoma (OS) cells and tube formation by endothelial cells. However, its function on T-cells is unknown. We hypothesized that blocking SFRP2 with a humanized monoclonal antibody (hSFRP2 mAb) can restore immunity by reducing CD38 and PD-1 levels, ultimately overcoming resistance to PD-1 inhibitors. Treating two metastatic murine OS cell lines in vivo, RF420 and RF577, with hSFRP2 mAb alone led to a significant reduction in the number of lung metastases, compared to IgG1 control treatment. While PD-1 mAb alone had minimal effect, hSFRP2 mAb combination with PD-1 mAb had an additive antimetastatic effect. This effect was accompanied by lower SFRP2 levels in serum, lower CD38 levels in tumor-infiltrating lymphocytes and T-cells, and lower PD-1 levels in T-cells. In vitro data confirmed that SFRP2 promotes NFATc3, CD38 and PD-1 expression in T-cells, while hSFRP2 mAb treatment counteracts these effects and increases NAD+ levels. hSFRP2 mAb treatment further rescued the suppression of T-cell proliferation by tumor cells in a co-culture model. Finally, hSFRP2 mAb induced apoptosis in RF420 and RF577 OS cells but not in T-cells. Thus, hSFRP2 mAb therapy could potentially overcome PD-1 inhibitor resistance in metastatic osteosarcoma.

6.
J Ocul Pharmacol Ther ; 37(6): 367-378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33945330

RESUMO

Purpose: Metabolic stress and associated mitochondrial dysfunction are implicated in retinal degeneration irrespective of the underlying cause. We identified seven unique chemicals from a Chembridge DiverSET screen and tested their protection against photoreceptor cell death in cell- and animal-based approaches. Methods: Calcium overload (A23187) was triggered in 661W murine photoreceptor-derived cells, and changes in redox potential and real-time changes in cellular metabolism were assessed using the MTT and Seahorse Biosciences XF assay, respectively. Cheminformatics to compare structures, and biodistribution in the living pig eye aided in selection of the lead compound. In-situ, retinal organ cultures of rd1 mouse and S334ter-line-3 rat were tested, in-vivo the light-induced retinal degeneration in albino Balb/c mice was used, assessing photoreceptor cell numbers histologically. Results: Of the seven chemicals, six were protective against A23187- and IBMX-induced loss of mitochondrial capacity, as measured by viability and respirometry in 661W cells. Cheminformatic analyses identified a unique pharmacophore with 6 physico-chemical features based on two compounds (CB11 and CB12). The protective efficacy of CB11 was further shown by reducing photoreceptor cell loss in retinal explants from two retinitis pigmentosa rodent models. Using eye drops, CB11 targeting to the pig retina was confirmed. The same eye drops decreased photoreceptor cell loss in light-stressed Balb/c mice. Conclusions: New chemicals were identified that protect from mitochondrial damage and lead to improved mitochondrial function. Using ex-vivo and in-vivo models, CB11 decreased the loss of photoreceptor cells in murine models of retinal degeneration and may be effective as treatment for different retinal dystrophies.


Assuntos
Modelos Animais de Doenças , Mitocôndrias/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Degeneração Retiniana/complicações , Retinose Pigmentar/prevenção & controle , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Retinose Pigmentar/etiologia , Retinose Pigmentar/patologia
7.
J Thorac Cardiovasc Surg ; 162(2): 463-473, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32653291

RESUMO

OBJECTIVE: Innate and acquired resistance is the principle factor limiting the efficacy of tyrosine kinase inhibitors in lung cancer. We have observed a dramatic upregulation of the cell surface co-receptor neuropilin-2b in lung cancers clinically treated with tyrosine kinase inhibitors correlating with acquired resistance. We hypothesize that neuropilin-2b plays a functional role in acquired tyrosine kinase inhibitor resistance. METHODS: Non-small cell lung cancer proliferation and survival were determined during chronic tyrosine kinase inhibitor exposure in the presence or absence of neuropilin-2b knock-down. Interactions of neuropilin-2a and neuropilin-2b isoforms with PTEN and GSK3ß were assessed by immunoprecipitation. Neuropilin-2a and neuropilin-2b mutants deleted for their cytoplasmic domains were used to identify regions responsible for neuropilin-2b-GSK3ß interaction. Because GSK3ß is known to phosphorylate and degrade PTEN, phospho-PTEN and total PTEN levels were assessed after transfection of neuropilin-2a and neuropilin-2b wild-type and mutant constructs. RESULTS: Non-small cell lung cancer cells chronically treated with gefitinib or osimertinib developed drug resistance and exhibited logarithmic growth in the presence of endothelial growth factor receptor tyrosine kinase inhibitors. However, neuropilin-2b knockdown cells remained sensitive to gefitinib. Likewise, neuropilin-2b knockdown suppressed and neuropilin-2a knockdown enhanced cellular migration. Acquired drug resistance and cell migration correlated with neuropilin-2b-dependent AKT activation with the intermediate step of GSK3ß-dependent PTEN degradation. A specific binding site for GSK3ß on the cytoplasmic domain of neuropilin-2b was identified with truncated protein constructs and computer modeling. CONCLUSIONS: Neuropilin-2b facilitates non-small cell lung cancer resistance to tyrosine kinase inhibitors, and this biological effect relates to AKT activation. Neuropilin-2b GSK3ß interactions appear to be essential for PTEN degradation and AKT activation in lung cancer cells. Disruption of the neuropilin-2b GSK3ß interaction may represent a novel treatment strategy to preserve sensitivity to tyrosine kinase inhibitors in non-small cell lung cancer.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Gefitinibe/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neuropilina-2/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Células A549 , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Invasividade Neoplásica , Neuropilina-2/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Mol Ther Methods Clin Dev ; 9: 1-11, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29234687

RESUMO

Complement activation plays a significant role in age-related macular degeneration (AMD) pathogenesis, and polymorphisms interfering with factor H (fH) function, a complement alternative pathway (AP) inhibitor, are associated with increased AMD risk. We have previously validated an AP inhibitor, a fusion protein consisting of a complement receptor 2 fragment linked to the inhibitory domain of fH (CR2-fH) as an efficacious treatment for choroidal neovascularization (CNV) when delivered intravenously. Here we tested an alternative approach of AAV-mediated delivery (AAV5-VMD2-CR2-fH or AAV5-VMD2-mCherry) using subretinal delivery in C57BL/6J mice. Secretion of CR2-fH was confirmed in polarized retinal pigment epithelium (RPE) cells. A safe concentration of AAV5-VMD2-CR2-fH was identified using electroretinography, optical coherence tomography (OCT), RPE morphology, and antibody profiling. One month after gene delivery, CNV was induced using argon laser photocoagulation. OCT assessment demonstrated reduced CNV with AAV5-VMD2-CR2-fH administration. Bioavailability studies revealed that gene-therapy delivered similar levels of CR2-fH to the RPE/choroid as treatment by intravenous injections, and C3a ELISA verified reduced CNV-associated ocular C3a production. These results contribute to existing data illustrating the importance of the AP of complement in CNV development and its potential role in AMD treatment. Demonstration of AAV-vector efficacy opens new avenues for the development of treatment strategies.

9.
Brain Res Dev Brain Res ; 138(2): 97-107, 2002 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-12354638

RESUMO

In this work, the differential expression of a chemical marker, the alpha-isoform of the calcium/calmodulin-dependent protein kinase II (CaM-Kinase II alpha) and the development of the spinal cord projection were used to determine in vivo the embryonic stages at which different aspects of the phenotype of neocortical cells are specified. We first performed a quantitative, immunocytochemical study on the levels of CaM-Kinase II alpha expression in the frontal, parietal and occipital cortical areas of control adult rats. We found that the levels of expression of CaM-Kinase II alpha were larger in the frontal and parietal areas than in the occipital areas. In addition, all layer V neurons identified as projecting to the spinal cord were CaM-Kinase II alpha immunopositive. We then grafted embryonic day (E) 12 or 14 cells from the presumptive frontal or occipital cortex of donor fetuses into the frontal or occipital cortex of newborn hosts. Cortical cells grafted at E12 differentiate neurons with molecular (CaM-Kinase II alpha) and connectivity (spinal cord projection) phenotypes appropriate to the cortical area where they complete their development whereas cells taken at E14 differentiate neurons with molecular and connectivity phenotypes appropriate to their cortical locus of origin. These findings suggest that E12 progenitors destined to generate layer V neurons are multipotent. The final phenotype of their progeny depends on regionalizing signals expressed in the environment. Later in corticogenesis, committed progenitors become unable to respond to regionalizing signals and generate neurons whose phenotype is appropriate to the initial cortical position of the precursor.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Neocórtex/citologia , Neocórtex/enzimologia , Plasticidade Neuronal/fisiologia , Neurônios/enzimologia , Animais , Animais Recém-Nascidos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Transplante de Células/fisiologia , Feminino , Imuno-Histoquímica , Masculino , Neocórtex/crescimento & desenvolvimento , Lobo Occipital/citologia , Lobo Occipital/enzimologia , Lobo Occipital/crescimento & desenvolvimento , Lobo Parietal/citologia , Lobo Parietal/enzimologia , Lobo Parietal/crescimento & desenvolvimento , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/enzimologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Gravidez , Ratos , Ratos Wistar , Medula Espinal/embriologia
10.
Cell Adh Migr ; 3(4): 383-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19855168

RESUMO

Semaphorin 3A (Sema3A) is a secreted guidance molecule initially described in the nervous system. This protein is able to control axon growth but also effects on endothelial cells migration. Here, we report that Sema3A acts as a chemorepellent factor for the rat C6 glioma cells and three different human glioma cell lines. Interestingly, Sema3A triggered a chemoattractive response in a fourth human glioma cell line. The nature of the receptor complex ensuring the appropriate signaling was dissected in C6 cells by using function blocking antibodies and gain- or loss-of function experiments using recombinant receptors. Our results demonstrate that neuropilin-1, neuropilin-2 and PlexinA1 are necessary to trigger cell repulsion. The selective blockade of neuropilin-1 or Plexin-A1 switched the chemorepulsive effect of Sema3A into a chemoattractive one. Strikingly, blocking Neuropilin-2 suppressed Sema3A-induced cell migration while overexpression of neuropilin-2 was able to convert the chemorepulsive effect of Sema3A into a chemoattractive one. Our results not only provide additional evidence for a biological function of Sema3A in glioma migration but also reveal part of the receptor complex involved. Hence, our study describes a receptor-based plasticity in cancer cells leading to opposite migration behavior in response to the same extracellular signal.


Assuntos
Movimento Celular/fisiologia , Glioma/patologia , Neuropilina-2/fisiologia , Semaforina-3A/farmacologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropilina-1/antagonistas & inibidores , Neuropilina-1/genética , Neuropilina-1/imunologia , Neuropilina-1/metabolismo , Neuropilina-2/antagonistas & inibidores , Ratos , Receptores de Superfície Celular/metabolismo , Semaforina-3A/genética , Transfecção
11.
Mol Biol Cell ; 19(2): 646-54, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18045991

RESUMO

Neuropilin-1 (NRP1) is a transmembrane receptor playing a pivotal role in the control of semaphorins and VEGF signaling pathways. The exact mechanism controlling semaphorin receptor complex formation is unknown. A structural analysis and modeling of NRP1 revealed a putative dimerization GxxxG motif potentially important for NRP1 dimerization and oligomerization. Our data show that this motif mediates the dimerization of the transmembrane domain of NRP1 as demonstrated by a dimerization assay (ToxLuc assay) performed in natural membrane and FRET analysis. A synthetic peptide derived from the transmembrane segment of NRP1 abolished the inhibitory effect of Sema3A. This effect depends on the capacity of the peptide to interfere with NRP1 dimerization and the formation of oligomeric complexes. Mutation of the GxxxG dimerization motif in the transmembrane domain of NRP1 confirmed its biological importance for Sema3A signaling. Overall, our results shed light on an essential step required for semaphorin signaling and provide novel evidence for the crucial role of transmembrane domain of bitopic protein containing GxxxG motif in the formation of receptor complexes that are a prerequisite for cell signaling.


Assuntos
Neuropilina-1/química , Neuropilina-1/metabolismo , Motivos de Aminoácidos , Animais , Células COS , Centrifugação com Gradiente de Concentração , Chlorocebus aethiops , Dimerização , Cones de Crescimento/efeitos dos fármacos , Humanos , Ligantes , Camundongos , Modelos Moleculares , Peptídeos/química , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Semaforina-3A/metabolismo , Semaforina-3A/farmacologia , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
12.
Eur J Neurosci ; 17(7): 1375-83, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12713640

RESUMO

To help understand how the cortical map is set up during the early stages of corticogenesis, we have examined the developmental fate of embryonic day (E) 12 cortical progenitors in the rat. We have analysed the pattern of thalamic connections and cytoarchitectonic organization developed by progenitor cells removed at E12 from the presumptive parietal or occipital cortex and grafted into the parietal cortex of newborn hosts. Occipital progenitors grafted into the parietal cortex differentiated into neurons that developed reciprocal connections with the ventrobasal complex of the host thalamus. They could also form barrel-like structures, within which axons of the ventrobasal complex were distributed in dense patches. Some of these barrel-like structures were arranged in rows. Moreover, these progenitors failed to develop characteristic traits of occipital cortex cells as they did not establish connections with the dorsal lateral geniculate nucleus. We propose that cortical progenitors are not committed at E12 and, upon heterotopic transplantation, have the capacity to respond to local cues and to subsequently differentiate and maintain major phenotypic characteristics of neurons in their new environment. Only early progenitors are multipotent. By E13/E14, indeed, most cortical cells become irreversibly committed and upon heterotopic transplantation differentiate neurons with phenotypic characteristics of their cortical site of origin (Pinaudeau et al., 2000, Eur. J. Neurosci., 12, 2486-2496).


Assuntos
Transplante de Tecido Encefálico , Transplante de Tecido Fetal , Lobo Occipital/transplante , Lobo Parietal/transplante , Tálamo/transplante , Transplante Heterotópico , Animais , Animais Recém-Nascidos , Estudos de Casos e Controles , Toxina da Cólera/metabolismo , Dextranos/metabolismo , Feminino , Feto , Corpos Geniculados/fisiologia , Corpos Geniculados/transplante , Imuno-Histoquímica , Masculino , Vias Neurais , Lobo Occipital/citologia , Lobo Occipital/embriologia , Lobo Parietal/citologia , Lobo Parietal/embriologia , Gravidez , Ratos , Coloração pela Prata/métodos , Tálamo/citologia , Tálamo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA