Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125662

RESUMO

Evidence shows that Autism Spectrum Disorder (ASD) stems from an interplay of genetic and environmental factors, which may include propionic acid (PPA), a microbial byproduct and food preservative. We previously reported that in vitro treatment of neural stem cells with PPA leads to gliosis and neuroinflammation. In this study, mice were exposed ad libitum to a PPA-rich diet for four weeks before mating. The same diet was maintained through pregnancy and administered to the offspring after weaning. The brains of the offspring were studied at 1 and 5 months postpartum. Glial fibrillary acidic protein (astrocytic marker) was significantly increased (1.53 ± 0.56-fold at 1 M and 1.63 ± 0.49-fold at 5 M) in the PPA group brains. Tubulin IIIß (neuronal marker) was significantly decreased in the 5 M group. IL-6 and TNF-α expression were increased in the brain of the PPA group (IL-6: 2.48 ± 1.25-fold at 5 M; TNF-α: 2.84 ± 1.16-fold at 1 M and 2.64 ± 1.42-fold, at 5 M), while IL-10 was decreased. GPR41 and p-Akt were increased, while PTEN (p-Akt inhibitor) was decreased in the PPA group. The data support the role of a PPA-rich diet in glia over-proliferation and neuro-inflammation mediated by the GPR41 receptor and PTEN/Akt pathway. These findings strongly support our earlier study on the role of PPA in ASD.


Assuntos
Transtorno do Espectro Autista , Modelos Animais de Doenças , Gliose , Propionatos , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/patologia , Camundongos , Gliose/metabolismo , Gliose/patologia , Feminino , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Dieta/efeitos adversos , Encéfalo/metabolismo , Encéfalo/patologia , Gravidez , Camundongos Transgênicos
2.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139261

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by deficits in communication and social interactions, restrictive and repetitive behavior, and a wide range of cognitive impediments. The prevalence of ASD tripled in the last 20 years and now affects 1 in 44 children. Although ASD's etiology is not yet elucidated, a growing body of evidence shows that it stems from a complex interplay of genetic and environmental factors. In recent years, there has been increased focus on the role of gut microbiota and their metabolites, as studies show that ASD patients show a significant shift in their gut composition, characterized by an increase in specific bacteria and elevated levels of short-chain fatty acids (SCFAs), especially propionic acid (PPA). This review aims to provide an overview of the role of microbiota and SCFAs in the human body, as well as possible implications of microbiota shift. Also, it highlights current studies aiming to compare the composition of the gut microbiome of ASD-afflicted patients with neurotypical control. Finally, it highlights studies with rodents where ASD-like symptoms or molecular hallmarks of ASD are evoked, via the grafting of microbes obtained from ASD subjects or direct exposure to PPA.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Microbiota , Criança , Humanos , Transtorno do Espectro Autista/metabolismo , Microbioma Gastrointestinal/fisiologia , Microbiota/fisiologia , Ácidos Graxos Voláteis
3.
Front Immunol ; 15: 1412800, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170608

RESUMO

Like TNFα, IL-6 is upregulated in Crohn's disease (CD) especially in patients associated with Mycobacterium avium paratuberculosis (MAP) infection, and both cytokines have been targeted as a therapeutic option for the treatment of the disease despite the accepted partial response in some patients. Limited response to anti-IL-6 receptor-neutralizing antibodies therapy may be related to the homeostatic dual role of IL-6. In this study, we investigated the effects and the signaling mechanism of IL-6 involved in intestinal epithelial integrity and function during MAP infection using an in vitro model that consists of THP-1, HT-29 and Caco-2 cell lines. Clinically, we determined that plasma samples from MAP-infected CD patients have higher IL-6 levels compared to controls (P-value < 0.001). In CD-like macrophages, MAP infection has significantly upregulated the secretion of IL-6 and the shedding of (IL-6R) from THP-1 macrophages, P-value < 0.05. Intestinal cell lines (Caco-2 and HT-29) were treated with the supernatant of MAP-infected THP-1 macrophages with or without a neutralizing anti-IL-6R antibody. Treating intestinal Caco-2 cells with supernatant of MAP-infected macrophages resulted in significant upregulation of intestinal damage markers including claudin-2 and SERPINE1/PAI-1. Interestingly, blocking IL-6 signaling exacerbated that damage and further increased the levels of the damage markers. In HT-29 cells, MAP infection upregulated MUC2 expression, a protective response that was reversed when IL-6R was neutralized. More importantly, blocking IL-6 signaling during MAP infection rescued damaged Caco-2 cells from MAP-induced apoptosis. The data clearly supports a protective role of IL-6 in intestinal epithelia integrity and function especially in CD patients associated with MAP infection. The findings may explain the ineffective response to anti-IL6 based therapy and strongly support a therapeutic option that restores the physiologic level of IL-6 in patient's plasma. A new treatment strategy based on attenuation of IL-6 expression and secretion in inflammatory diseases should be considered.


Assuntos
Interleucina-6 , Mucosa Intestinal , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Receptores de Interleucina-6 , Humanos , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-6/antagonistas & inibidores , Receptores de Interleucina-6/imunologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Células CACO-2 , Interleucina-6/metabolismo , Interleucina-6/imunologia , Células HT29 , Mucosa Intestinal/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Paratuberculose/imunologia , Paratuberculose/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Doença de Crohn/imunologia , Doença de Crohn/microbiologia , Células THP-1 , Masculino , Anticorpos Neutralizantes/farmacologia , Feminino , Adulto , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Pessoa de Meia-Idade , Transdução de Sinais
4.
Nutrients ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732603

RESUMO

BACKGROUND: Vitamin D plays a vital role in modulating both innate and adaptive immune systems. Therefore, vitamin D deficiency has been associated with higher levels of autoimmune response and increased susceptibility to infections. CYP27B1 encodes a member of the cytochrome P450 superfamily of enzymes. It is instrumental in the conversion of circulating vitamin D (calcifediol) to active vitamin D (calcitriol). This is a crucial step for macrophages to express Cathelicidin Anti-microbial Peptide (CAMP), an anti-bacterial factor released during the immune response. Our recent study indicated that a Crohn's disease (CD)-associated pathogen known as Mycobacterium avium paratuberculosis (MAP) decreases vitamin D activation in macrophages, thereby impeding cathelicidin production and MAP infection clearance. The mechanism by which MAP infection exerts these effects on the vitamin D metabolic axis remains elusive. METHODS: We used two cell culture models of THP-1 macrophages and Caco-2 monolayers to establish the effects of MAP infection on the vitamin D metabolic axis. We also tested the effects of Calcifediol, Calcitriol, and SB203580 treatments on the relative expression of the vitamin D metabolic genes, oxidative stress biomarkers, and inflammatory cytokines profile. RESULTS: In this study, we found that MAP infection interferes with vitamin D activation inside THP-1 macrophages by reducing levels of CYP27B1 and vitamin D receptor (VDR) gene expression via interaction with the TLR2-dependent p38/MAPK pathway. MAP infection exerts its effects in a time-dependent manner, with the maximal inhibition observed at 24 h post-infection. We also demonstrated the necessity to have toll-like receptor 2 (TLR2) for MAP infection to influence CYP27B1 and CAMP expression, as TLR2 gene knockdown resulted in an average increase of 7.78 ± 0.88 and 13.90 ± 3.5 folds in their expression, respectively. MAP infection also clearly decreased the levels of p38 phosphorylation and showed dependency on the p38/MAPK pathway to influence the expression of CYP27B1, VDR, and CAMP which was evident by the average fold increase of 1.93 ± 0.28, 1.86 ± 0.27, and 6.34 ± 0.51 in their expression, respectively, following p38 antagonism. Finally, we showed that calcitriol treatment and p38/MAPK blockade reduce cellular oxidative stress and inflammatory markers in Caco-2 monolayers following macrophage-mediated MAP infection. CONCLUSIONS: This study characterized the primary mechanism by which MAP infection leads to diminished levels of active vitamin D and cathelicidin in CD patients, which may explain the exacerbated vitamin D deficiency state in these cases.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase , Catelicidinas , Sistema de Sinalização das MAP Quinases , Macrófagos , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Humanos , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Células CACO-2 , Calcitriol/farmacologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Paratuberculose/microbiologia , Receptores de Calcitriol/metabolismo , Transdução de Sinais , Células THP-1 , Receptor 2 Toll-Like/metabolismo , Vitamina D/farmacologia
5.
Front Cell Infect Microbiol ; 14: 1327969, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415011

RESUMO

Objectives: 1) Culture Mycobacterium avium ssp. paratuberculosis (MAP)from blood, 2) assess infection persistence, 3) determine Crohn's disease (CD) cytokine expression, 4) compare CD cytokine expression to tuberculosis, and 5) perform a meta-analysis of cytokine expression in CD. Methods: The Temple University/Abilene Christian University (TU/ACU) study had a prospective case control design with 201 subjects including 61 CD patients and 140 non-CD controls. The culture methods included MGIT, TiKa and Pozzato broths, and were deemed MAP positive, if IS900 PCR positive. A phage amplification assay was also performed to detect MAP. Cytokine analysis of the TU/ACU samples was performed using Simple Plex cytokine reagents on the Ella ELISA system. Statistical analyses were done after log transformation using the R software package. The meta-analysis combined three studies. Results: Most subjects had MAP positive blood cultures by one or more methods in 3 laboratories. In our cytokine study comparing CD to non-CD controls, IL-17, IFNγ and TNFα were significantly increased in CD, but IL-2, IL-5, IL-10 and GM-CSF were not increased. In the meta-analysis, IL-6, IL-8 and IL-12 were significantly increased in the CD patients. Conclusion: Most subjects in our sample had MAP infection and 8 of 9 subjects remained MAP positive one year later indicating persistent infection. While not identical, cytokine expression patterns in MAP culture positive CD patients in the TU/ACU study showed similarities (increased IL-17, IFNγ and TNFα) to patterns of patients with Tuberculosis in other studies, indicating the possibilities of similar mechanisms of pathogen infection and potential strategies for treatment.


Assuntos
Doença de Crohn , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Tuberculose , Animais , Humanos , Doença de Crohn/microbiologia , Paratuberculose/microbiologia , Interleucina-17 , Citocinas , Fator de Necrose Tumoral alfa , Hemocultura
6.
Geroscience ; 46(3): 3085-3103, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38191834

RESUMO

Colitis, a subtype of inflammatory bowel disease (IBD), is a multifactorial disorder characterized by chronic inflammation of the colon. Among various experimental models used in the study of IBD, the chemical colitogenic dextran sulfate sodium (DSS) is most commonly employed to induce colitis in vivo. In the search for new therapeutic strategies, Fisetin, a flavonoid found in many fruits and vegetables, has recently garnered attention for its senolytic properties. Female mice were administered 2.5% DSS in sterile drinking water and were subsequently treated with Fisetin or vehicle by oral gavage. DSS significantly upregulated beta-galactosidase activity in colonic proteins, while Fisetin remarkably inhibited its activity to baseline levels. Particularly, qPCR revealed that the senescence and inflammation markers Vimentin and Ptgs2 were elevated by DSS exposure with Fisetin treatment inhibiting the expression of p53, Bcl2, Cxcl1, and Mcp1, indicating that the treatment reduced senescent cell burden in the DSS targeted intestine. Alongside, senescence and inflammation associated miRNAs miR-149-5p, miR-96-5p, miR-34a-5p, and miR-30e-5p were significantly inhibited by DSS exposure and restored by Fisetin treatment, revealing novel targets for the treatment of IBDs. Metagenomics was implemented to assess impacts on the microbiota, with DSS increasing the prevalence of bacteria in the phyla Bacteroidetes. Meanwhile, Fisetin restored gut health through increased abundance of Akkermansia muciniphila, which is negatively correlated with senescence and inflammation. Our study suggests that Fisetin mitigates DSS-induced colitis by targeting senescence and inflammation and restoring beneficial bacteria in the gut indicating its potential as a therapeutic intervention for IBDs.


Assuntos
Colite , Flavonóis , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , MicroRNAs , Feminino , Animais , Camundongos , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação , Doenças Inflamatórias Intestinais/microbiologia , Biomarcadores
7.
Front Immunol ; 14: 1295230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106420

RESUMO

Interleukin-6 (IL-6) is a key mediator cytokine of the immune response as well as a regulator of many physiological and pathological processes. In Crohn's disease (CD), cytokine imbalance rules the intestinal microenvironment and leads to chronic inflammation of the gut. Pro-inflammatory cytokines are generally upregulated in inflammatory bowel disease (IBD) including TNFα and IL-6. Consequently, drugs that target these cytokines have been long sought and approved. Despite the short-term success in treating CD patients with anti-TNFα, many patients stopped responding to treatment, which made IL-6 an alternative target to alleviate inflammation in these patients. IL-6 has long been approached as part of the therapeutic strategies to treat CD and other inflammatory disorders. Clinical trials of CD patients have targeted IL-6 signaling in different mechanisms: blocking IL-6, neutralizing IL-6 receptor (IL-6R), or trapping the soluble IL-6/IL-6R complex. These trials have faced challenges and side effects in patients with gastrointestinal perforations and ulcers, for example, all of which highlight the dual role of IL-6 during intestinal inflammation and the need for this cytokine for intestinal tissue integrity. IL-6 is involved in a complex of upstream regulators and downstream signaling cascades and maintaining a physiological level of IL-6 in the blood and in the intestine is key for achieving health and homeostasis. In this review, we describe IL-6 biology and signaling and its involvement in intestinal health and inflammation. We also discuss the current strategies for targeting IL-6 pathways in CD patients, as well as molecular regulators representing potential therapeutic targets for IL-6 attenuation.


Assuntos
Doença de Crohn , Doenças Inflamatórias Intestinais , Interleucina-6 , Humanos , Citocinas , Inflamação , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA