Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Radiol Med ; 127(3): 294-304, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35041136

RESUMO

PURPOSE: We investigated whether the additional use of grey-scale inversion technique improves the interpretation of eight chest abnormalities, in terms of diagnostic performance and interobserver variability. MATERIAL AND METHODS: A total of 507 patients who underwent a chest computed tomography (CT) examination and a chest radiography (CXR) within 24 h were enrolled. CT was the standard of reference. Images were retrospectively reviewed for the presence of atelectasis, consolidation, interstitial abnormality, nodule, mass, pleural effusion, pneumothorax and rib fractures. Four CXR reading settings, involving 3 readers were organized: only standard; only inverted; standard followed by inverted; and inverted followed by standard. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy, assessed with the area under the curve (AUC), and their 95% confidence interval were calculated for each reader and setting. Interobserver agreement was tested by Cohen's K test with quadratic weights (Kw) and its 95%CI. RESULTS: CXR sensitivity % for any finding was 35.1 (95% CI: 33 to 37) for setting 1, 35.9 (95% CI: 33 to 37), for setting 2, 32.59 (95% CI: 30 to 34) for setting 3, and 35.56 (95% CI: 33 to 37) for setting 4; specificity % 93.78 (95% CI: 91 to 95), 93.92 (95% CI: 91 to 95), 94.43 (95% CI: 92 to 96), 93.86 (95% CI: 91 to 95); PPV % 56.22 (95% CI: 54.2 to 58.2), 56.49 (95% CI: 54.5 to 58.5), 57.15 (95% CI: 55 to 59), 56.75 (95% CI: 54 to 58); NPV % 85.66 (95% CI: 83 to 87), 85.74 (95% CI: 83 to 87), 85.29 (95% CI: 83 to 87), 85.73 (95% CI: 83 to 87); AUC values 0.64 (95% CI: 0.62 to 0.66), 0.65 (95% CI: 0.63 to 0.67), 0.64 (95% CI: 0.62 to 0.66), 0.65 (95% CI: 0.63 to 0.67); Kw values 0.42 (95% CI: 0.4 to 0.44), 0.40 (95% CI: 0.38 to 0.42), 0.42 (95% CI: 0.4 to 0.44), 0.41 (95% CI: 0.39 to 0.43) for settings 1, 2, 3 and 4, respectively. CONCLUSIONS: No significant advantages were observed in the use of grey-scale inversion technique neither over standard display mode nor in combination at the detection of eight chest abnormalities.


Assuntos
Pneumopatias , Radiografia Torácica , Humanos , Pneumopatias/diagnóstico por imagem , Radiografia , Radiografia Torácica/métodos , Estudos Retrospectivos , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X
2.
J Digit Imaging ; 33(2): 490-496, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31768897

RESUMO

Pneumothorax is a potentially life-threatening condition that requires prompt recognition and often urgent intervention. In the ICU setting, large numbers of chest radiographs are performed and must be interpreted on a daily basis which may delay diagnosis of this entity. Development of artificial intelligence (AI) techniques to detect pneumothorax could help expedite detection as well as localize and potentially quantify pneumothorax. Open image analysis competitions are useful in advancing state-of-the art AI algorithms but generally require large expert annotated datasets. We have annotated and adjudicated a large dataset of chest radiographs to be made public with the goal of sparking innovation in this space. Because of the cumbersome and time-consuming nature of image labeling, we explored the value of using AI models to generate annotations for review. Utilization of this machine learning annotation (MLA) technique appeared to expedite our annotation process with relatively high sensitivity at the expense of specificity. Further research is required to confirm and better characterize the value of MLAs. Our adjudicated dataset is now available for public consumption in the form of a challenge.


Assuntos
Crowdsourcing , Pneumotórax , Inteligência Artificial , Conjuntos de Dados como Assunto , Humanos , Aprendizado de Máquina , Pneumotórax/diagnóstico por imagem , Raios X
3.
Br J Radiol ; 95(1133): 20200260, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995141

RESUMO

Lung cancer screening (LCS) by low-dose computed tomography is a strategy for secondary prevention of lung cancer. In the last two decades, LCS trials showed several options to practice secondary prevention in association with primary prevention, however, the translation from trial to practice is everything but simple. In 2020, the European Society of Radiology and European Respiratory Society published their joint statement paper on LCS. This commentary aims to provide the readership with detailed description about hurdles and potential solutions that could be encountered in the practice of LCS.


Assuntos
Neoplasias Pulmonares , Radiologia , Detecção Precoce de Câncer/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Programas de Rastreamento/métodos , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA