Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202411217, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103975

RESUMO

Hole-transporting materials (HTMs) are crucial for obtaining the stability and high efficiency of perovskite solar cells (PSCs). However, the current state-of-the-art n-i-p PSCs relied on the use of 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) exhibit inferior intrinsic and ambient stability due to the p-dopant and hydrophilic Li-TFSI additive. In this study, a new spiro-type HTM with a critical quasi-planar core (Z-W-03) is developed to improve both the thermal and ambient stability of PSCs. The results suggest that the planar carbazole structure effectively passivates the trap states compared to the triphenylamine with a propeller-like conformation in spiro-OMeTAD. This passivation effect leads to the shallower trap states when the quasi-planar HTMs interact with the Pb-dimer. Consequently, the device using Z-W-03 achieves a higher Voc of 1.178 V compared to the spiro-OMeTAD's 1.155 V, resulting in an enhanced efficiency of 24.02%. In addition, the double-column π-π stacking of Z-W-03 results in high hole mobility (~10-4 cm2 V-1 s-1) even without p-dopant. Moreover, when the surface interface is modified, the undoped Z-W-03 device can achieve an efficiency of nearly 23%. Compared to the PSCs using spiro-OMeTAD, those with Z-W-03 exhibit enhanced stability under N2 and ambient conditions.

2.
Adv Mater ; 36(28): e2310619, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718249

RESUMO

The orthogonal structure of the widely used hole transporting material (HTM) 2,2',7,7'-tetrakis(N, N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD) imparts isotropic conductivity and excellent film-forming capability. However, inherently weak intra- and inter-molecular π-π interactions result in low intrinsic hole mobility. Herein, a novel HTM, termed FTPE-ST, with a twist conjugated dibenzo(g,p)chrysene core and coplanar 3,4-ethylenedioxythiophene (EDOT) as extended donor units, is designed to enhance π-π interactions, without compromising on solubility. The three-dimensional (3D) configuration provides the material multi-direction charge transport as well as excellent solubility even in 2-methylanisole, and its large conjugated backbone endows the HTM with a high hole mobility. Moreover, the sulfur donors in EDOT units coordinate with lead ions on the perovskite surface, leading to stronger interfacial interactions and the suppression of defects at the perovskite/HTM interface. As a result, perovskite solar cells (PSCs) employing FTPE-ST achieve a champion power conversion efficiency (PCE) of 25.21% with excellent long-time stability, one of the highest PCEs for non-spiro HTMs in n-i-p PSCs. In addition, the excellent film-forming capacity of the HTM enables the fabrication of FTPE-ST-based large-scale PSCs (1.0 cm2) and modules (29.0 cm2), which achieve PCEs of 24.21% (certificated 24.17%) and 21.27%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA