Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Med Microbiol ; 312(1): 151544, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34922100

RESUMO

Mycobacterium tuberculosis (M. tuberculosis) encodes an essential enzyme acetyl ornithine aminotransferase ArgD (Rv1655) of arginine biosynthetic pathway which plays crucial role in M. tuberculosis growth and survival. ArgD catalyzes the reversible conversion of N-acetylornithine and 2 oxoglutarate into glutamate-5-semialdehyde and L-glutamate. It also possesses succinyl diaminopimelate aminotransferase activity and can thus carry out the corresponding step in lysine biosynthesis. These essential roles played by ArgD in amino acid biosynthetic pathways highlight it as an important metabolic chokepoint thus an important drug target. We showed that M. tuberculosis ArgD rescues the growth of ΔargD E. coli grown in minimal media validating its functional importance. Phylogenetic analysis of M. tuberculosis ArgD showed homology with proteins in gram positive bacteria, pathogenic and non-pathogenic mycobacteria suggesting the essentiality of this protein. ArgD is a secretory protein that could be utilized by M. tuberculosis to modulate host innate immunity as its moonlighting function. In-silico analysis predicted it to be a highly antigenic protein. The recombinant ArgD protein when exposed to macrophage cells induced enhanced production of pro-inflammatory cytokines TNF, IL6 and IL12 in a dose dependent manner. ArgD also induced the increased production of innate immune effector molecule NOS2 and NO in macrophages. We also demonstrated ArgD mediated activation of the canonical NFkB pathway. Notably, we also show that ArgD is a specific TLR4 agonist involved in the activation of pro-inflammatory signaling for sustained production of effector cytokines. Intriguingly, ArgD protein treatment activated macrophages to acquire the M1 phenotype through the increased surface expression of MHCII and costimulatory molecules CD80 and CD86. ArgD induced robust B-cell response in immunized mice, validating its antigenicity potential as predicted by the in-silico analysis. These properties of M. tuberculosis ArgD signify its functional plasticity that could be exploited as a possible drug target to combat tuberculosis.


Assuntos
Mycobacterium tuberculosis , Animais , Proteínas de Bactérias/genética , Escherichia coli , Camundongos , Filogenia , Transaminases/genética
2.
Int J Cardiol Heart Vasc ; 53: 101469, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39139609

RESUMO

Sphingolipids are eighteen carbon alcohol lipids synthesized from non-sphingolipid precursors in the endoplasmic reticulum (ER). The sphingolipids serve as precursors for a vast range of moieties found in our cells that play a critical role in various cellular processes, including cell division, senescence, migration, differentiation, apoptosis, pyroptosis, autophagy, nutrition intake, metabolism, and protein synthesis. In CVDs, different subclasses of sphingolipids and other derived molecules such as sphingomyelin (SM), ceramides (CERs), and sphingosine-1-phosphate (S1P) are directly related to diabetic cardiomyopathy, dilated cardiomyopathy, myocarditis, ischemic heart disease (IHD), hypertension, and atherogenesis. Several genome-wide association studies showed an association between genetic variations in sphingolipid pathway genes and the risk of CVDs. The sphingolipid pathway plays an important role in the biogenesis and secretion of exosomes. Small extracellular vesicles (sEVs)/ exosomes have recently been found as possible indicators for the onset of CVDs, linking various cellular signaling pathways that contribute to the disease progression. Important features of EVs like biocompatibility, and crossing of biological barriers can improve the pharmacokinetics of drugs and will be exploited to develop next-generation drug delivery systems. In this review, we have comprehensively discussed the role of sphingolipids, and sphingolipid metabolites in the development of CVDs. In addition, concise deliberations were laid to discuss the role of sEVs/exosomes in regulating the pathophysiological processes of CVDs and the exosomes as therapeutic targets.

3.
Front Nutr ; 10: 1215873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720376

RESUMO

Humans are constantly facing multiple health challenges from both communicable and non-communicable diseases that significantly affect their health. Additionally, drug resistance or failure has made the situation even worse and poses serious challenges for researchers to develop new drugs. Hence, to address these problems, there is an urgent need to discover and develop timely and long-term-based therapeutic treatments from different sources. One such approach is harnessing the potential of plant secondary metabolites. Plants have been utilized for therapeutic purposes in addition to being used for nutritional benefits. In the last two decades, plant-based drug developments have been one of the effective means of treating human diseases owing to their multiple functions. More recently, anti-nutritional factors (ANFs) have emerged as one of the important targets for novel plant-based drug development due to their multifaceted and potential pharmacological properties. However, their anti-nutritional properties have been the major setback for their limited success in the pharmacological sector. In this review, we provide an overview of ANFs and their beneficial roles in preventing human diseases with multiple case studies. We also highlight the recent developments and applications of ANFs in the food industry, agriculture, and pharmaceutics with future perspectives. Furthermore, we evaluate meta-analyses on ANFs from the last 30 years in relation to their function in human health benefits. This review is an endeavor to reevaluate the merit of these natural compounds and explore their potential for both human and animal health.

4.
GM Crops Food ; 14(1): 1-20, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36606637

RESUMO

Domestication of orphan crops could be explored by editing their genomes. Genome editing has a lot of promise for enhancing agricultural output, and there is a lot of interest in furthering breeding in orphan crops, which are sometimes plagued with unwanted traits that resemble wild cousins. Consequently, applying model crop knowledge to orphan crops allows for the rapid generation of targeted allelic diversity and innovative breeding germplasm. We explain how plant breeders could employ genome editing as a novel platform to accelerate the domestication of semi-domesticated or wild plants, resulting in a more diversified base for future food and fodder supplies. This review emphasizes both the practicality of the strategy and the need to invest in research that advances our understanding of plant genomes, genes, and cellular systems. Planting more of these abandoned orphan crops could help alleviate food scarcities in the challenge of future climate crises.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Melhoramento Vegetal , Agricultura , Produtos Agrícolas/genética , Genoma de Planta/genética , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA