Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Biochim Biophys Acta ; 1289(1): 83-6, 1996 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-8605237

RESUMO

This enzyme porphobilinogen synthase (PBGS) catalyses the formation of porphobilinogen (PBG) from two molecules of 5-amino-levulinic acid (ALA). It has been claimed that the PBGS from Rhodobacter spheroides is able to form a mixed pyrrole, from one molecule of 5-aminolevulinic acid and one molecule of levulinic acid. The chemical synthesis of this mixed pyrrole allowed us to show that the compound formed from 5-aminolevulinic acid and levulinic acid with PBGS from R. spheroides has not the proposed structure. The putative enzyme-catalysed formation of the mixed pyrrole has been used as an argument for the postulated mechanism of PBGS. In view of our results, this line of argument has be re-evaluated.


Assuntos
Sintase do Porfobilinogênio/farmacologia , Pirróis/síntese química , Rhodobacter sphaeroides/enzimologia
3.
Chem Biol ; 7(3): 185-96, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10712932

RESUMO

BACKGROUND: Porphobilinogen synthase is the second enzyme involved in the biosynthesis of natural tetrapyrrolic compounds, and condenses two molecules of 5-aminolevulinic acid (ALA) through a nonsymmetrical pathway to form porphobilinogen. Each substrate is recognized individually at two different active site positions to be regioselectively introduced into the product. According to pulse-labeling experiments, the substrate forming the propionic acid sidechain of porphobilinogen is recognized first. Two different mechanisms for the first bond-forming step between the two substrates have been proposed. The first involves carbon-carbon bond formation (an aldol-type reaction) and the second carbon-nitrogen bond formation, leading to an iminium ion. RESULTS: With the help of kinetic studies, we determined the Michaelis constants for each substrate recognition site. These results explain the Michaelis-Menten behavior of substrate analog inhibitors - they act as competitive inhibitors. Under standard conditions, however, another set of inhibitors demonstrates uncompetitive, mixed, pure irreversible, slow-binding or even quasi-irreversible inhibition behavior. CONCLUSIONS: Analysis of the different classes of inhibition behavior allowed us to make a correlation between the type of inhibition and a specific site of interaction. Analyzing the inhibition behavior of analogs of postulated intermediates strongly suggests that carbon-nitrogen bond formation occurs first.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Sintase do Porfobilinogênio/antagonistas & inibidores , Ácido Aminolevulínico/química , Ácido Aminolevulínico/metabolismo , Ligação Competitiva , Domínio Catalítico , Ácidos Dicarboxílicos/síntese química , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/farmacologia , Inibidores Enzimáticos/síntese química , Cinética , Modelos Químicos , Porfobilinogênio/química , Porfobilinogênio/metabolismo , Sintase do Porfobilinogênio/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
4.
FEBS Lett ; 503(2-3): 196-200, 2001 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-11513881

RESUMO

The structures of 5-aminolaevulinic acid dehydratase complexed with two irreversible inhibitors (4-oxosebacic acid and 4,7-dioxosebacic acid) have been solved at high resolution. Both inhibitors bind by forming a Schiff base link with Lys 263 at the active site. Previous inhibitor binding studies have defined the interactions made by only one of the two substrate moieties (P-side substrate) which bind to the enzyme during catalysis. The structures reported here provide an improved definition of the interactions made by both of the substrate molecules (A- and P-side substrates). The most intriguing result is the novel finding that 4,7-dioxosebacic acid forms a second Schiff base with the enzyme involving Lys 210. It has been known for many years that P-side substrate forms a Schiff base (with Lys 263) but until now there has been no evidence that binding of A-side substrate involves formation of a Schiff base with the enzyme. A catalytic mechanism involving substrate linked to the enzyme through Schiff bases at both the A- and P-sites is proposed.


Assuntos
Sintase do Porfobilinogênio/antagonistas & inibidores , Sintase do Porfobilinogênio/química , Saccharomyces cerevisiae/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Ácidos Decanoicos/química , Ácidos Decanoicos/farmacologia , Inibidores Enzimáticos/química , Substâncias Macromoleculares , Modelos Moleculares , Conformação Proteica , Bases de Schiff/química , Eletricidade Estática , Especificidade por Substrato
5.
J Med Chem ; 43(25): 4738-46, 2000 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-11123982

RESUMO

Protoporphyrin IX (PpIX) is used as a photosensitizing agent in photodynamic detection and therapy (PDT) of cancer and is synthesized intracellularly from aminolevulinic acid (ALA) precursors. To evaluate means to specifically target ALA derivatives to defined cells, we have synthesized and characterized ethylene glycol esters and amino acid pseudodipeptide derivatives of ALA as potential specific substrates for cellular esterases and aminopeptidases, respectively. The PpIX formation induced by these products was investigated using cultures of human and rat cell lines of carcinoma and endothelial origins. The cytotoxicity of these compounds in the absence of light was also controlled. The results have shown that ethylenglycol esters can induce high levels of PpIX and are useful at concentrations below their cytotoxicity threshold. From the ALA-amino acid derivatives which were evaluated, the highest PpIX production was obtained using ALA derivatives of neutral amino acids, as compared to acidic or basic amino acids.


Assuntos
Aminoácidos/química , Ácido Aminolevulínico/análogos & derivados , Ácido Aminolevulínico/síntese química , Dipeptídeos/química , Etilenoglicóis/química , Fármacos Fotossensibilizantes/síntese química , Precursores de Proteínas/síntese química , Protoporfirinas/biossíntese , Ácido Aminolevulínico/química , Ácido Aminolevulínico/metabolismo , Aminopeptidases/metabolismo , Animais , Fluorescência , Glutamil Aminopeptidase , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Ratos , Células Tumorais Cultivadas
6.
Acta Crystallogr D Biol Crystallogr ; 61(Pt 9): 1222-6, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16131755

RESUMO

The X-ray structure of the enzyme 5-aminolaevulinic acid dehydratase (ALAD) from yeast complexed with the competitive inhibitor 5-hydroxylaevulinic acid has been determined at a resolution of 1.9 A. The structure shows that the inhibitor is bound by a Schiff-base link to one of the invariant active-site lysine residues (Lys263). The inhibitor appears to bind in two well defined conformations and the interactions made by it suggest that it is a very close analogue of the substrate 5-aminolaevulinic acid (ALA).


Assuntos
Ácido Aminolevulínico/análogos & derivados , Proteínas Fúngicas/química , Sintase do Porfobilinogênio/química , Ácido Aminolevulínico/química , Ácido Aminolevulínico/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Proteínas Fúngicas/metabolismo , Estrutura Molecular , Sintase do Porfobilinogênio/antagonistas & inibidores , Sintase do Porfobilinogênio/metabolismo , Conformação Proteica , Bases de Schiff
7.
Org Lett ; 2(23): 3535-7, 2000 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-11073638

RESUMO

Substituted 2-hydroxy-3-acetylfurans are synthesized by alkylation of tert-butyl acetoacetate with an alpha-haloketone followed by treatment of the obtained intermediate with trifluoroacetic acid (TFA). A second alkylation of the intermediate followed by treatment with trifluoroacetic acid provides access to disubstituted 2-methylfurans.

8.
Chembiochem ; 2(5): 343-54, 2001 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-11828463

RESUMO

Porphobilinogen synthase condenses two molecules of 5-aminolevulinate in an asymmetric way. This unusual transformation requires a selective recognition and differentiation between the substrates ending up in the A site or in the P site of porphobilinogen synthase. Studies of inhibitors based on the key intermediate first postulated by Jordan allowed differentiation of the two recognition sites. The P site, whose structure is known from X-ray crystallographic studies, tolerates ester functions well. The A site interacts very strongly with nitro groups, but is not very tolerant to ester functions. This differentiation is a central factor in the asymmetric handling of the two identical substrates. Finally, it could be shown that the keto group of the substrate bound at the A site is not only essential for the recognition, but that an increase in electrophilicity of the carbon atom also increases the inhibition potency considerably. This has important consequences for the recognition process at the A site, whose exact structure is not yet known.


Assuntos
Escherichia coli/enzimologia , Sintase do Porfobilinogênio/antagonistas & inibidores , Ácido Aminolevulínico/metabolismo , Sítios de Ligação , Inibidores Enzimáticos/metabolismo , Cinética , Porfobilinogênio/metabolismo , Sintase do Porfobilinogênio/metabolismo , Especificidade por Substrato
9.
Biochemistry ; 40(28): 8227-36, 2001 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-11444968

RESUMO

4,7-Dioxosebacic acid (4,7-DOSA) is an active site-directed irreversible inhibitor of porphobilinogen synthase (PBGS). PBGS catalyzes the first common step in the biosynthesis of the tetrapyrrole cofactors such as heme, vitamin B(12), and chlorophyll. 4,7-DOSA was designed as an analogue of a proposed reaction intermediate in the physiological PBGS-catalyzed condensation of two molecules of 5-aminolevulinic acid. As shown here, 4,7-DOSA exhibits time-dependent and dramatic species-specific inhibition of PBGS enzymes. IC(50) values vary from 1 microM to 2.4 mM for human, Escherichia coli, Bradyrhizobium japonicum, Pseudomonas aeruginosa, and pea enzymes. Those PBGS utilizing a catalytic Zn(2+) are more sensitive to 4,7-DOSA than those that do not. Weak inhibition of a human mutant PBGS establishes that the inactivation by 4,7-DOSA requires formation of a Schiff base to a lysine that normally forms a Schiff base intermediate to one substrate molecule. A 1.9 A resolution crystal structure of E. coli PBGS complexed with 4,7-DOSA (PDB code ) shows one dimer per asymmetric unit and reveals that the inhibitor forms two Schiff base linkages with each monomer, one to the normal Schiff base-forming Lys-246 and the other to a universally conserved "perturbing" Lys-194 (E. coli numbering). This is the first structure to show inhibitor binding at the second of two substrate-binding sites.


Assuntos
Ácidos Decanoicos/química , Inibidores Enzimáticos/química , Sintase do Porfobilinogênio/antagonistas & inibidores , Sintase do Porfobilinogênio/química , Sequência de Aminoácidos , Sítios de Ligação/genética , Cátions Bivalentes/química , Cristalização , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Escherichia coli/enzimologia , Humanos , Cinética , Magnésio/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Sintase do Porfobilinogênio/genética , Bases de Schiff/química , Especificidade da Espécie , Especificidade por Substrato/genética , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA