Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochim Biophys Acta ; 1823(9): 1580-93, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22387373

RESUMO

Throughout evolution, all organisms have harnessed the redox properties of copper (Cu) and iron (Fe) as a cofactor or structural determinant of proteins that perform critical functions in biology. At its most sobering stance to Earth's biome, Cu biochemistry allows photosynthetic organisms to harness solar energy and convert it into the organic energy that sustains the existence of all nonphotosynthetic life forms. The conversion of organic energy, in the form of nutrients that include carbohydrates, amino acids and fatty acids, is subsequently released during cellular respiration, itself a Cu-dependent process, and stored as ATP that is used to drive a myriad of critical biological processes such as enzyme-catalyzed biosynthetic processes, transport of cargo around cells and across membranes, and protein degradation. The life-supporting properties of Cu incur a significant challenge to cells that must not only exquisitely balance intracellular Cu concentrations, but also chaperone this redox-active metal from its point of cellular entry to its ultimate destination so as to avert the potential for inappropriate biochemical interactions or generation of damaging reactive oxidative species (ROS). In this review we chart the travels of Cu from the extracellular milieu of fungal and mammalian cells, its path within the cytosol as inferred by the proteins and ligands that escort and deliver Cu to intracellular organelles and protein targets, and its journey throughout the body of mammals. This article is part of a Special Issue entitled: Cell Biology of Metals.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Mamíferos/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Evolução Biológica , Transporte Biológico , Cobre/química , Homeostase/fisiologia , Humanos , Ferro/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Oxirredução , Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
2.
PLoS Pathog ; 7(3): e1001322, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21445236

RESUMO

The fungal pathogen Candida glabrata has risen from an innocuous commensal to a major human pathogen that causes life-threatening infections with an associated mortality rate of up to 50%. The dramatic rise in the number of immunocompromised individuals from HIV infection, tuberculosis, and as a result of immunosuppressive regimens in cancer treatment and transplant interventions have created a new and hitherto unchartered niche for the proliferation of C. glabrata. Iron acquisition is a known microbial virulence determinant and human diseases of iron overload have been found to correlate with increased bacterial burden. Given that more than 2 billion people worldwide suffer from iron deficiency and that iron overload is one of the most common single-gene inherited diseases, it is important to understand whether host iron status may influence C. glabrata infectious disease progression. Here we identify Sit1 as the sole siderophore-iron transporter in C. glabrata and demonstrate that siderophore-mediated iron acquisition is critical for enhancing C. glabrata survival to the microbicidal activities of macrophages. Within the Sit1 transporter, we identify a conserved extracellular SIderophore Transporter Domain (SITD) that is critical for siderophore-mediated ability of C. glabrata to resist macrophage killing. Using macrophage models of human iron overload disease, we demonstrate that C. glabrata senses altered iron levels within the phagosomal compartment. Moreover, Sit1 functions as a determinant for C. glabrata to survive macrophage killing in a manner that is dependent on macrophage iron status. These studies suggest that host iron status is a modifier of infectious disease that modulates the dependence on distinct mechanisms of microbial Fe acquisition.


Assuntos
Candida glabrata/metabolismo , Candida glabrata/patogenicidade , Candidíase/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Sideróforos/metabolismo , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Candida glabrata/genética , Candidíase/genética , Proteínas de Transporte/genética , Proteínas Fúngicas/genética , Humanos , Dados de Sequência Molecular , Sideróforos/genética , Fatores de Virulência/genética
3.
Biometals ; 24(3): 547-58, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21399939

RESUMO

Iron acquisition is a bona fide virulence determinant. The successful colonization of the mammalian host requires that microorganisms overcome the Fe aridity of this milieu in which the levels of circulating Fe are maintained exceedingly low both through the compartmentalization of this nutrient within cells as well as the tight binding of Fe to host circulating proteins and ligands. Microbes notoriously employ multiple strategies for high affinity Fe acquisition from the host that rely either on the expression of receptors for host Fe-binding proteins and ligands, its reduction by cell surface reductases or the utilization of siderophores, small organic molecules with very high affinity for Fe(3+). This review will discuss the multiple mechanisms deployed by fungal pathogens in Fe acquisition focusing on the role of siderophore utilization in virulence as well as host immune strategies of iron withholding and emerging clinical evidence that human disorders of Fe homeostasis can act as modifiers of infectious disease.


Assuntos
Anti-Infecciosos/metabolismo , Fungos/patogenicidade , Imunidade Inata/fisiologia , Ferro/metabolismo , Animais , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/microbiologia , Fungos/metabolismo , Homeostase , Humanos , Oxirredução
4.
Nat Chem Biol ; 4(3): 176-85, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18277979

RESUMO

Copper (Cu) is a redox-active metal ion essential for most aerobic organisms. Cu serves as a catalytic and structural cofactor for enzymes that function in energy generation, iron acquisition, oxygen transport, cellular metabolism, peptide hormone maturation, blood clotting, signal transduction and a host of other processes. The inability to control Cu balance is associated with genetic diseases of overload and deficiency and has recently been tied to neurodegenerative disorders and fungal virulence. The essential nature of Cu, the existence of human genetic disorders of Cu metabolism and the potential impact of Cu deposition in the environment have been driving forces for detailed investigations in microbial and eukaryotic model systems. Here we review recent advances in the identification and function of cellular and systemic molecules that drive Cu accumulation, distribution and sensing.


Assuntos
Cobre/metabolismo , Metaloproteínas/metabolismo , Animais , Transporte Biológico , Compartimento Celular , Cobre/química , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Humanos , Metaloproteínas/química , Mitocôndrias/química , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Virulência
5.
FEBS J ; 272(11): 2639-47, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15943799

RESUMO

The budding yeast Saccharomyces cerevisiae possesses a very flexible and complex programme of gene expression when exposed to a plethora of environmental insults. Therefore, yeast cell homeostasis control is achieved through a highly coordinated mechanism of transcription regulation involving several factors, each performing specific functions. Here, we present our current knowledge of the function of the yeast activator protein family, formed by eight basic-leucine zipper trans-activators, which have been shown to play an important role in stress response.


Assuntos
Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos
6.
Biochem J ; 379(Pt 2): 367-74, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-14680476

RESUMO

YAP4, a member of the yeast activator protein ( YAP ) gene family, is induced in response to osmotic shock in the yeast Saccharomyces cerevisiae. The null mutant displays mild and moderate growth sensitivity at 0.4 M and 0.8 M NaCl respectively, a fact that led us to analyse YAP4 mRNA levels in the hog1 (high osmolarity glycerol) mutant. The data obtained show a complete abolition of YAP4 gene expression in this mutant, placing YAP4 under the HOG response pathway. YAP4 overexpression not only suppresses the osmosensitivity phenotype of the yap4 mutant but also relieves that of the hog1 mutant. Induction, under the conditions tested so far, requires the presence of the transcription factor Msn2p, but not of Msn4p, as YAP4 mRNA levels are depleted by at least 75% in the msn2 mutant. This result was further substantiated by the fact that full YAP4 induction requires the two more proximal stress response elements. Furthermore we find that GCY1, encoding a putative glycerol dehydrogenase, GPP2, encoding a NAD-dependent glycerol-3-phosphate phosphatase, and DCS2, a homologue to a decapping enzyme, have decreased mRNA levels in the yap4 -deleted strain. Our data point to a possible, as yet not entirely understood, role of the YAP4 in osmotic stress response.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/fisiologia , Glicerol/metabolismo , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Mutação , Proteínas Nucleares/biossíntese , Pressão Osmótica , Fenótipo , Elementos de Resposta , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/fisiologia
7.
FEBS Lett ; 567(1): 80-5, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15165897

RESUMO

Yeast, and especially Saccharomyces cerevisiae, are continuously exposed to rapid and drastic changes in their external milieu. Therefore, cells must maintain their homeostasis, which is achieved through a highly coordinated gene expression involving a plethora of transcription factors, each of them performing specific functions. Here, we discuss recent advances in our understanding of the function of the yeast activator protein family of eight basic-leucine zipper trans-activators that have been implicated in various forms of stress response.


Assuntos
Proteínas Fúngicas/fisiologia , Estresse Oxidativo , Sequência de Aminoácidos , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica , Modelos Biológicos , Dados de Sequência Molecular , Família Multigênica , Pressão Osmótica , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo
8.
Yeast ; 21(16): 1365-74, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15565582

RESUMO

Exposure of Saccharomyces cerevisiae to several environmental insults, including conditions of oxidative, heavy metal, metalloid and heat stress, induces the expression of the YAP4 gene, previously shown to play a role in the response to hyperosmotic stress. Expression analyses in several mutant strains under pro-oxidant conditions have determined that YAP4 is regulated by the transactivators Yap1p and Msn2p. Mutation of either the Yap1p-response element (YRE), located at - 517 bp from the ATG, or the most proximal stress response element (STRE) at -430 bp, is shown to strongly compromise YAP4 gene expression under these conditions. Furthermore, these two mutations in combination lead to a severe depletion of detectable mRNA levels, indicating interplay between the transcription factors Yap1p and Msn2p in the regulation of YAP4 transcription. Transcriptional activation of this gene reflects a concomitant increase in Yap4p protein levels that appear phosphorylated upon stress and negatively regulated by protein kinase A. Yap4p amino acid residues Ser89, Ser196 and Thr241 are shown to be required for protein phosphorylation and/or protein stability.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/genética , Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/biossíntese , Fosforilação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA