Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(46): 19542-19550, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34752701

RESUMO

Hydrogen selenide (H2Se) is a central metabolite in the biological processing of selenium for incorporation into selenoproteins, which play crucial antioxidant roles in biological systems. Despite being integral to proper physiological function, this reactive selenium species (RSeS) has received limited attention. We recently reported an early example of a H2Se donor (TDN1042) that exhibited slow, sustained release through hydrolysis. Here we expand that technology based on the P═Se motif to develop cyclic-PSe compounds with increased rates of hydrolysis and function through well-defined mechanisms as monitored by 31P and 77Se NMR spectroscopy. In addition, we report a colorimetric method based on the reaction of H2Se with NBD-Cl to generate NBD-SeH (λmax = 551 nm), which can be used to detect free H2Se. Furthermore, we use TOF-SIMS (time of flight secondary ion mass spectroscopy) to demonstrate that these H2Se donors are cell permeable and use this technique for spatial mapping of the intracellular Se content after H2Se delivery. Moreover, these H2Se donors reduce endogenous intracellular reactive oxygen species (ROS) levels. Taken together, this work expands the toolbox of H2Se donor technology and sets the stage for future work focused on the biological activity and beneficial applications of H2Se and related bioinorganic RSeS.


Assuntos
Compostos de Selênio/metabolismo , Células HeLa , Humanos , Hidrólise , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Compostos de Selênio/química
2.
Chem Sci ; 14(27): 7581-7588, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37449078

RESUMO

Hydrogen selenide (H2Se) is a possible bioregulator, potential gasotransmitter, and important precursor in biological organoselenium compound synthesis. Early tools for H2Se research have benefitted from available mechanistic understanding of analogous small molecules developed for detecting or delivering H2S. A now common approach for H2S delivery is the use of small molecule thiocarbamates that can be engineered to release COS, which is quickly converted to H2S by carbonic anhydrase. To expand our understanding of the chemical underpinnings that enable H2Se delivery, we investigated whether selenocarbamates undergo similar chemistry to release carbonyl selenide (COSe). Using both light- and hydrolysis-activated systems, we demonstrate that unlike their lighter thiocarbamate congeners, selenocarbamates release H2Se directly with concomitant isocyanate formation rather than by the intermediate release of COSe. This reaction mechanism for direct H2Se release is further supported by computational investigations that identify a ΔΔG‡ ∼ 25 kcal mol-1 between the H2Se and COSe release pathways in the absence of protic solvent. This work highlights fundamentally new approaches for H2Se release from small molecules and advances the understanding of reactivity differences between reactive sulfur and selenium species.

3.
Free Radic Biol Med ; 190: 148-157, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940516

RESUMO

Reactive oxygen species (ROS) are important modulators of physiological signaling and play important roles in bone tissue regulation. Both reactive sulfur species (RSS) and reactive selenium species (RSeS) are involved in ROS signaling, and recent work suggests RSS and RSeS involvement in the regulation of bone homeostasis. For example, RSS can promote osteogenic differentiation and decrease osteoclast activity and differentiation, and the antioxidant activity of RSeS play crucial roles in balancing bone remodeling. Here, we outline current research progress on the application of RSS and RSeS in bone disease and regeneration. Focusing on these investigations, we highlight different methods, tools, and sources of RSS and RSeS, and we also highlight future opportunities for delivery of RSS and RSeS in biological environments relating to bone.


Assuntos
Selênio , Osso e Ossos , Homeostase , Osteogênese , Espécies Reativas de Oxigênio , Enxofre
4.
Chem Sci ; 10(46): 10723-10727, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32110352

RESUMO

Selenium is essential to human physiology and has recently shown potential in the treatment of common pathophysiological conditions ranging from arsenic poisoning to cancer. Although the precise metabolic and chemical pathways of selenium incorporation into biomolecules remain somewhat unclear, many such pathways proceed through hydrogen selenide (H2Se/HSe-) formation. Despite this importance, well-characterized chemistry that enables H2Se release under controlled conditions remains lacking. Motivated by this need, we report here the development of a hydrolysis-based H2Se donor (TDN1042). Utilizing 31P and 77Se NMR experiments, we demonstrate the pH dependence of H2Se release and characterize observed reaction intermediates during the hydrolysis mechanism. Finally, we confirm H2Se release using electrophilic trapping reagents, which not only demonstrates the fidelity of this donor platform but also provides an efficient method for investigating future H2Se donor motifs. Taken together, this work provides an early example of an H2Se donor that functions through a well-defined and characterized mechanism.

5.
Chem Sci ; 10(6): 1773-1779, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30842844

RESUMO

Dithioesters have a rich history in polymer chemistry for RAFT polymerizations and are readily accessible through different synthetic methods. Here we demonstrate that the dithioester functional group is a tunable motif that releases H2S upon reaction with cysteine and that structural and electronic modifications enable the rate of cysteine-mediated H2S release to be modified. In addition, we use (bis)phenyl dithioester to carry out kinetic and mechanistic investigations, which demonstrate that the initial attack by cysteine is the rate-limiting step of the reaction. These insights are further supported by complementary DFT calculations. We anticipate that the results from these investigations will allow for the further development of dithioesters as important chemical motifs for studying H2S chemical biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA