RESUMO
The increasing demand for neodymium (Nd) permanent magnets in electric motors has revived research interest of Nd recovery and separation from other rare earth elements (REEs). Typically, Nd/La separation is necessary for Nd recovery from primary ores and secondary resource recycling. This research used a flat sheet-supported liquid membrane (FSSLM) with different extractant-acid systems to extract Nd from a Nd/La mixture. The recovery and separation of Nd/La with 204P-H2SO4, 507P-HCl, and TBP-HNO3 were discussed. The results showed effective Nd recovery and promising Nd/La selectivity could be achieved in the 507P-HCl system, compared to 204P-H2SO4 and TBP-HNO3. The addition of citric acid to the feed solution was effective for pH buffering but did not improve the Nd transport or Nd/La selectivity. Long-term stability of the 507P-HCl extractant system was demonstrated by extending the processing time from 6 h to 6 days.
RESUMO
Cross-linked polymers of intrinsic microporosity (PIM)s for gas separation membranes, were prepared by a nitrene reaction from a representative PIM in the presence of two different diazide cross-linkers. The reaction temperature was optimized using TGA. The homogenous membranes were cast from THF solutions of different ratios of PIM to azides. The resulting cross-linked structures of the PIMs membranes were formed at 175 °C after 7.5 h and confirmed by TGA, XPS, FT-IR spectroscopy and gel content analysis. These resulting cross-linked polymeric membranes showed excellent gas separation performance and can be used for O(2) /N(2) and CO(2) /N(2) gas pairs, as well as for condensable gases, such as CO(2) /CH(4) , propylene/propane separation. Most importantly, and differently from typical gas separation membranes derived from glassy polymers, the crosslinked PIMs showed no obvious CO(2) plasticization up to 20 atm pressure of pure CO(2) and CO(2) /CH(4) mixtures.