Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 28(21): 4811-4824, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31549466

RESUMO

Genomic heterogeneity of divergence between hybridizing species may reflect heterogeneity of introgression, but also processes unrelated to hybridization. Heterogeneous introgression and its repeatability can be directly tested in natural hybrid zones by examining multiple transects. Here, we studied hybrid zones between the European newts Lissotriton montandoni and two lineages of Lissotriton vulgaris, with replicate transects within each zone. Over 1,000 nuclear genes located on a linkage map and mitochondrial DNA were investigated using geographical and genomic clines. Overall, the five transects were all similar, showing hallmarks of strong reproductive isolation: bimodal distribution of genotypes in central populations and narrow allele frequency clines. However, the extent of introgression differed between the zones, possibly as a consequence of their different ages, as suggested by the analysis of heterozygosity runs in diagnostic markers. In three transects genomic signatures of small-scale (~2 km) zone movements were detected. We found limited overlap of cline outliers between transects, and only weak evidence of stronger differentiation of introgression between zones than between transects within zones. Introgression was heterogeneous across linkage groups, with patterns of heterogeneity similar between transects and zones. Predefined candidates for increased or reduced introgression exhibited only a subtle tendency in the expected direction, suggesting that interspecific differentiation is not a reliable indicator for the strength of introgression. These hierarchically sampled hybrid zones of apparently different ages show how introgression unfolds with time and offer an excellent opportunity to dissect the dynamics of hybridization and architecture of reproductive isolation at advanced stages of speciation.


Assuntos
Hibridização Genética/genética , Salamandridae/genética , Animais , DNA Mitocondrial/genética , Fluxo Gênico/genética , Frequência do Gene/genética , Marcadores Genéticos/genética , Especiação Genética , Genética Populacional/métodos , Genoma/genética , Genótipo , Geografia , Isolamento Reprodutivo
2.
Proc Biol Sci ; 285(1884)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111606

RESUMO

The importance of interspecific introgression as a source of adaptive variation is increasingly recognized. Theory predicts that beneficial genetic variants cross species boundaries easily even when interspecific hybridization is rare and gene flow is strongly constrained throughout the genome. However, it remains unclear whether certain classes of genes are particularly prone to adaptive introgression. Genes affected by balancing selection (BS) may constitute such a class, because forms of BS that favour novel, initially rare alleles, should facilitate introgression. We tested this hypothesis in hybridizing newts by comparing 13 genes with signatures of BS, in particular an excess of common non-synonymous polymorphisms, to the genomic background (154 genes). Parapatric hybridizing taxa were less differentiated in BS candidate genes than more closely related allopatric lineages, while the opposite was observed in the control genes. Coalescent and forward simulations that explored neutral and BS scenarios under isolation and migration showed that processes other than differential gene flow are unlikely to account for this pattern. We conclude that BS, probably involving a form of novel allele advantage, promotes introgression. This mechanism may be a source of adaptively relevant variation in hybridizing species over prolonged periods.


Assuntos
Fluxo Gênico , Variação Genética , Salamandridae/genética , Seleção Genética , Alelos , Animais , Europa (Continente) , Evolução Molecular , Hibridização Genética , Polimorfismo Genético
3.
G3 (Bethesda) ; 7(7): 2115-2124, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28500054

RESUMO

Linkage maps are widely used to investigate structure, function, and evolution of genomes. In speciation research, maps facilitate the study of the genetic architecture of reproductive isolation by allowing identification of genomic regions underlying reduced fitness of hybrids. Here we present a linkage map for European newts of the Lissotriton vulgaris species complex, constructed using two families of F2 L. montandoni × L. vulgaris hybrids. The map consists of 1146 protein-coding genes on 12 linkage groups, equal to the haploid chromosome number, with a total length of 1484 cM (1.29 cM per marker). It is notably shorter than two other maps available for salamanders, but the differences in map length are consistent with cytogenetic estimates of the number of chiasmata per chromosomal arm. Thus, large salamander genomes do not necessarily translate into long linkage maps, as previously suggested. Consequently, salamanders are an excellent model to study evolutionary consequences of recombination rate variation in taxa with large genomes and a similar number of chromosomes. A complex pattern of transmission ratio distortion (TRD) was detected: TRD occurred mostly in one family, in one breeding season, and was clustered in two genomic segments. This is consistent with environment-dependent mortality of individuals carrying L. montandoni alleles in these two segments and suggests a role of TRD blocks in reproductive isolation. The reported linkage map will empower studies on the genomic architecture of divergence and interactions between the genomes of hybridizing newts.


Assuntos
Alelos , Proteínas de Anfíbios/genética , Quimera/genética , Mapeamento Cromossômico , Ligação Genética , Animais , Cruzamento , Reprodução/fisiologia , Salamandridae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA