Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Cancer ; 154(6): 1057-1072, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38078628

RESUMO

About 25% of melanoma harbor activating NRAS mutations, which are associated with aggressive disease therefore requiring a rapid antitumor intervention. However, no efficient targeted therapy options are currently available for patients with NRAS-mutant melanoma. MEK inhibitors (MEKi) appear to display a moderate antitumor activity and also immunological effects in NRAS-mutant melanoma, providing an ideal backbone for combination treatments. In our study, the MEKi binimetinib, cobimetinib and trametinib combined with the BRAF inhibitors (BRAFi) encorafenib, vemurafenib and dabrafenib were investigated for their ability to inhibit proliferation, induce apoptosis and alter the expression of immune modulatory molecules in sensitive NRAS-mutant melanoma cells using two- and three-dimensional cell culture models as well as RNA sequencing analyses. Furthermore, NRAS-mutant melanoma cells resistant to the three BRAFi/MEKi combinations were established to characterize the mechanisms contributing to their resistance. All BRAFi induced a stress response in the sensitive NRAS-mutant melanoma cells thereby significantly enhancing the antiproliferative and proapoptotic activity of the MEKi analyzed. Furthermore, BRAFi/MEKi combinations upregulated immune relevant molecules, such as ICOS-L, components of antigen-presenting machinery and the "don't eat me signal" molecule CD47 in the melanoma cells. The BRAFi/MEKi-resistant, NRAS-mutant melanoma cells counteracted the molecular and immunological effects of BRAFi/MEKi by upregulating downstream mitogen-activated protein kinase pathway molecules, inhibiting apoptosis and promoting immune escape mechanisms. Together, our study reveals potent molecular and immunological effects of BRAFi/MEKi in sensitive NRAS-mutant melanoma cells that may be exploited in new combinational treatment strategies for patients with NRAS-mutant melanoma.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Proteínas Proto-Oncogênicas B-raf , Vemurafenib , Inibidores de Proteínas Quinases/efeitos adversos , Quinases de Proteína Quinase Ativadas por Mitógeno , Mutação , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/genética
2.
Am J Respir Crit Care Med ; 207(1): 38-49, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926164

RESUMO

Rationale: Coronavirus disease 2019 (COVID-19) can lead to acute respiratory distress syndrome with fatal outcomes. Evidence suggests that dysregulated immune responses, including autoimmunity, are key pathogenic factors. Objectives: To assess whether IgA autoantibodies target lung-specific proteins and contribute to disease severity. Methods: We collected 147 blood, 9 lung tissue, and 36 BAL fluid samples from three tertiary hospitals in Switzerland and one in Germany. Severe COVID-19 was defined by the need to administer oxygen. We investigated the presence of IgA autoantibodies and their effects on pulmonary surfactant in COVID-19 using the following methods: immunofluorescence on tissue samples, immunoprecipitations followed by mass spectrometry on BAL fluid samples, enzyme-linked immunosorbent assays on blood samples, and surface tension measurements with medical surfactant. Measurements and Main Results: IgA autoantibodies targeting pulmonary surfactant proteins B and C were elevated in patients with severe COVID-19 but not in patients with influenza or bacterial pneumonia. Notably, pulmonary surfactant failed to reduce surface tension after incubation with either plasma or purified IgA from patients with severe COVID-19. Conclusions: Our data suggest that patients with severe COVID-19 harbor IgA autoantibodies against pulmonary surfactant proteins B and C and that these autoantibodies block the function of lung surfactant, potentially contributing to alveolar collapse and poor oxygenation.


Assuntos
COVID-19 , Surfactantes Pulmonares , Humanos , Surfactantes Pulmonares/metabolismo , Líquido da Lavagem Broncoalveolar/química , Tensoativos , Autoanticorpos , Imunoglobulina A
3.
Am J Pathol ; 190(10): 2155-2164, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32679231

RESUMO

Aberrant DNA methylation is an epigenetic hallmark of melanoma, but the expression of DNA methyltransferase (Dnmt)-1 in melanocytic tumors is unknown. Dnmt1 expression was analyzed in primary melanocytes, melanoma cell lines, and 83 melanocytic tumors, and its associations with proliferation, mutational status, and response to B-Raf and mitogen-activated protein kinase kinase (MEK) inhibition were explored. Dnmt1 expression was increased incrementally from nevi [mean fluorescence intensity (MFI), 48.1; interquartile range, 41.7 to 59.6] to primary melanomas (MFI, 68.8; interquartile range, 58.4 to 77.0) and metastatic melanomas (MFI, 87.5; interquartile range, 77.1 to 114.5) (P < 0.001). Dnmt1 expression was correlated with Ki-67 expression (Spearman correlation, 0.483; P < 0.001) and was independent of BRAF mutation status (P = 0.55). In BRAF-mutant melanoma, Dnmt1 was down-regulated during response to B-Raf and MEK inhibition and was again up-regulated on drug resistance in vitro and in vivo. Degradation of Dnmt1 by the histone deacetylase inhibitor suberoylanilide hydroxamic acid was associated with decreased cell viability in B-Raf inhibitor-sensitive and -resistant cell lines. This study demonstrates that Dnmt1 expression is correlated with proliferation in melanocytic tumors, is increased with melanoma progression, and is associated with response to B-Raf and MEK inhibition. Given its strong expression in metastatic melanoma, Dnmt1 may be a promising target for combined epigenetic and immunotherapy.


Assuntos
Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Melanoma/metabolismo , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias Cutâneas/metabolismo , Linhagem Celular Tumoral , DNA/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanoma/genética , Melanoma/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/genética , Vorinostat/farmacologia , Melanoma Maligno Cutâneo
4.
Molecules ; 26(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34577057

RESUMO

Resveratrol, a natural plant phytoalexin, is produced in response to fungal infection or- UV irradiation. It exists as an isomeric pair with cis- and trans-conformation. Whereas multiple physiological effects of the trans-form, including a pronounced anti-tumoral activity, are nowadays elucidated, much less knowledge exists concerning the cis-isomer. In our work, we analyzed the antiproliferative and cytotoxic properties of cis-resveratrol in four different human tumor entities in direct comparison to trans-resveratrol. We used human cell lines as tumor models for hepatocellular carcinoma (HCC; HepG2, Hep3B), colon carcinoma (HCT-116, HCT-116/p53(-/-)), pancreatic carcinoma (Capan-2, MiaPaCa-2), and renal cell carcinoma (A498, SN12C). Increased cytotoxicity in all investigated tumor cells was observed for the trans-isomer. To verify possible effects of the tumor suppressor p53 on resveratrol-induced cell death, we used wild type and p53-deleted or -mutated cell lines for every tested tumor entity. Applying viability and cytotoxicity assays, we demonstrated a differential, dose-dependent sensitivity towards cis- or trans-resveratrol among the respective tumor types.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Resveratrol , Proteína Supressora de Tumor p53 , Antineoplásicos , Apoptose/efeitos dos fármacos , Humanos
5.
Nature ; 494(7437): 361-5, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23376950

RESUMO

Cancer control by adaptive immunity involves a number of defined death and clearance mechanisms. However, efficient inhibition of exponential cancer growth by T cells and interferon-γ (IFN-γ) requires additional undefined mechanisms that arrest cancer cell proliferation. Here we show that the combined action of the T-helper-1-cell cytokines IFN-γ and tumour necrosis factor (TNF) directly induces permanent growth arrest in cancers. To safely separate senescence induced by tumour immunity from oncogene-induced senescence, we used a mouse model in which the Simian virus 40 large T antigen (Tag) expressed under the control of the rat insulin promoter creates tumours by attenuating p53- and Rb-mediated cell cycle control. When combined, IFN-γ and TNF drive Tag-expressing cancers into senescence by inducing permanent growth arrest in G1/G0, activation of p16INK4a (also known as CDKN2A), and downstream Rb hypophosphorylation at serine 795. This cytokine-induced senescence strictly requires STAT1 and TNFR1 (also known as TNFRSF1A) signalling in addition to p16INK4a. In vivo, Tag-specific T-helper 1 cells permanently arrest Tag-expressing cancers by inducing IFN-γ- and TNFR1-dependent senescence. Conversely, Tnfr1(-/-)Tag-expressing cancers resist cytokine-induced senescence and grow aggressively, even in TNFR1-expressing hosts. Finally, as IFN-γ and TNF induce senescence in numerous murine and human cancers, this may be a general mechanism for arresting cancer progression.


Assuntos
Senescência Celular/imunologia , Citocinas/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Células Th1/imunologia , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Ciclo Celular , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Interferon gama/imunologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Oncogenes/genética , Fosfosserina/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo , Fator de Transcrição STAT1/metabolismo , Fatores de Tempo , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/imunologia , Proteína Supressora de Tumor p53/metabolismo
6.
Mol Cancer ; 17(1): 59, 2018 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-29454361

RESUMO

BACKGROUND: During embryonic development Wnt family members and bone morphogenetic proteins (BMPs) cooperatively induce epithelial-mesenchymal transition (EMT) in the neural crest. Wnt and BMPs are reactivated during malignant transformation in melanoma. We previously demonstrated that the BMP-antagonist noggin blocked the EMT phenotype of melanoma cells in the neural crest and malignant invasion of melanoma cells in the chick embryo; vice-versa, malignant invasion was induced in human melanocytes in vivo by pre-treatment with BMP-2. RESULTS: Although there are conflicting results in the literature about the role of ß-catenin for invasion of melanoma cells, we found Wnt/ß-catenin signaling to be analogously important for the EMT-like phenotype of human metastatic melanoma cells in the neural crest and during invasion: ß-catenin was frequently expressed at the invasive front of human primary melanomas and Wnt3a expression was inversely correlated with survival of melanoma patients. Accordingly, cytoplasmic ß-catenin levels were increased during invasion of melanoma cells in the rhombencephalon of the chick embryo. Fibroblast derived Wnt3a reduced melanoma cell adhesion and enhanced migration, while the ß-catenin inhibitor PKF115-584 increased adhesion and reduced migration in vitro and in the chick embryonic neural crest environment in vivo. Similarly, knockdown of ß-catenin impaired intradermal melanoma cell invasion and PKF115-584 efficiently reduced liver metastasis in a chick chorioallantoic membrane model. Our observations were accompanied by specific alterations in gene expression which are linked to overall survival of melanoma patients. CONCLUSION: We present a novel role for Wnt-signaling in neural crest like melanoma cell invasion and metastasis, stressing the crucial role of embryonic EMT-inducing neural crest signaling for the spreading of malignant melanoma.


Assuntos
Movimento Celular , Transformação Celular Neoplásica/metabolismo , Melanoma/etiologia , Melanoma/metabolismo , Crista Neural/metabolismo , Fenótipo , Via de Sinalização Wnt , Animais , Biomarcadores , Adesão Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Embrião de Galinha , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Técnicas de Silenciamento de Genes , Humanos , Melanoma/mortalidade , Melanoma/patologia , Melanoma Experimental , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Crista Neural/patologia , Perileno/análogos & derivados , Perileno/farmacologia , RNA Interferente Pequeno/genética , Peixe-Zebra , beta Catenina/genética , beta Catenina/metabolismo
7.
Cell Physiol Biochem ; 51(2): 543-556, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30458450

RESUMO

BACKGROUND/AIMS: Prenylnaringenins are natural prenylflavonoids with anticancer properties. However, the underlying mechanisms have not been elucidated yet. Here we report a novel mode of action of 6- and 8-prenylnaringenin (PN) on human melanoma cells: Inhibition of cellular histone deacetylases (HDACs). METHODS: We performed in silico and in vitro analyses using 6-PN or 8-PN to study a possible interaction of 6-PN or 8-PN with HDAC as well as Western blot and FACS analyses, real-time cell proliferation and cell viability assays to assess the impact of 6-PN and 8-PN on human metastatic melanoma cells. RESULTS: In silico, 6-PN and 8-PN fit into the binding pocket of HDAC2, 4, 7 and 8, binding to the zinc ion of their catalytic center that is essential for enzymatic activity. In vitro, 100 µmol/L of 6-PN or 8-PN inhibited all 11 conserved human HDAC of class I, II and IV. In clinical oncology HDAC inhibitors are currently investigated as new anticancer compounds. In line, treatment of SK-MEL-28 cells with 6-PN or 8-PN induced a hyperacetylation of histone complex H3 within 2 h. Further, 6-PN or 8-PN mediated a prominent, dose-dependent reduction of cellular proliferation and viability of SK-MEL-28 and BLM melanoma cells. This effect was apoptosis-independent and accompanied by down-regulation of mTOR-specific pS6 protein via pERK/pP90 in SK-MEL-28 cells. CONCLUSION: The identification of a broad inhibitory capacity of 6-PN and 8-PN for HDAC enzymes with antiproliferative effects on melanoma cells opens the perspective for clinical application as novel anti-melanoma drugs and the usage as innovative lead structures for chemical modification to enhance pharmacology or inhibitory activities.


Assuntos
Apoptose/efeitos dos fármacos , Flavanonas/farmacologia , Flavonoides/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Humulus/química , Acetilação/efeitos dos fármacos , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flavanonas/química , Flavanonas/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/isolamento & purificação , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Humulus/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Simulação de Acoplamento Molecular , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo
8.
Cell Immunol ; 327: 68-76, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29478948

RESUMO

Metastatic melanoma is the most dangerous form of skin cancer, with an ever-increasing incidence worldwide. Despite encouraging results with immunotherapeutic approaches, long-term survival is still poor. This is likely partly due to tumour-induced immune suppression mediated by myeloid-derived suppressor cells (MDSCs), which were shown to be associated with response to therapy and survival. Thus, identifying pathways responsible for MDSC differentiation may provide new therapeutic targets and improve efficacy of existing immunotherapies. Therefore, we've analysed mechanisms by which tumour cells contribute to the induction of MDSCs. Established melanoma cell lines were pre-treated with inhibitors of different pathways and tested for their capacity to alleviate T cell suppression via MDSC differentiation in vitro. Targeting HSP70/90 in melanoma cells resulted in reduced induction of immune suppressive cells on a phenotypic and functional basis, for which a more potent effect was observed when HSP90 was inhibited under hypoxic conditions. This initial study suggests a novel mechanism in tumour cells responsible for the induction of MDSC in melanoma.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Melanoma/metabolismo , Células Supressoras Mieloides/metabolismo , Adulto , Apresentação de Antígeno , Linfócitos T CD8-Positivos , Diferenciação Celular , Linhagem Celular Tumoral , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Voluntários Saudáveis , Humanos , Terapia de Imunossupressão , Imunoterapia , Masculino , Melanoma/imunologia , Células Mieloides , Células Supressoras Mieloides/fisiologia
10.
Cancer ; 123(S11): 2163-2175, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28543697

RESUMO

Substantial proportions of patients with metastatic melanoma develop brain metastases during the course of their disease, often resulting in significant morbidity and death. Despite recent advances with BRAF/MEK and immune-checkpoint inhibitors in the treatment of patients who have melanoma with extracerebral metastases, patients who have melanoma brain metastases still have poor overall survival, highlighting the need for further therapy options. A deeper understanding of the molecular pathways involved in the development of melanoma brain metastases is required to develop more brain-specific therapies. Here, the authors summarize the currently known preclinical data and describe steps involved in the development of melanoma brain metastases. Only by knowing the molecular background is it possible to design new therapeutic agents that can be used to improve the outcome of patients with melanoma brain metastases. Cancer 2017;123:2163-75. © 2017 American Cancer Society.


Assuntos
Neoplasias Encefálicas/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Antineoplásicos/uso terapêutico , Antígeno B7-H1 , Barreira Hematoencefálica , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Adesão Celular , Irradiação Craniana , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Glucuronidase/metabolismo , Humanos , Imunoterapia , Integrinas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Melanoma/secundário , Melanoma/terapia , Terapia de Alvo Molecular , Neovascularização Patológica/metabolismo , Radiocirurgia , Receptores CCR4/metabolismo , Neoplasias Cutâneas/patologia , Fator de Crescimento Transformador beta2/metabolismo , Evasão Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Exp Dermatol ; 26(7): 598-606, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28423208

RESUMO

The BRAFV600E inhibitor vemurafenib achieves remarkable clinical responses in patients with BRAF-mutant melanoma, but its effects are limited by the onset of drug resistance. In the case of resistance, chemotherapy can still be applied as second line therapy. However, it yields low response rates and strategies are urgently needed to potentiate its effects. In a previous study, we showed that the inhibition of the PI3K-AKT-mTOR pathway significantly increases sensitivity of melanoma cells to chemotherapeutic drugs (J. Invest. Dermatol. 2009, 129, 1500). In this study, the combination of the mTOR inhibitor temsirolimus with the chemotherapeutic agent temozolomide significantly increases growth inhibition and apoptosis in melanoma cells compared to temsirolimus or temozolomide alone. The combination of temozolomide with temsirolimus is not only effective in established but also in newly isolated and vemurafenib-resistant metastatic melanoma cell lines. These effects are associated with the downregulation of the anti-apoptotic protein Mcl-1 and the upregulation of the Wnt antagonist Dickkopf homologue 1 (DKK1). Knock-down of DKK1 suppresses apoptosis induction by the combination of temsirolimus and temozolomide. These data suggest that the inhibition of the mTOR pathway increases sensitivity of melanoma cells towards temozolomide. Chemosensitisation is associated with enhanced expression of the Wnt antagonist DKK1.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Dacarbazina/análogos & derivados , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Melanoma/tratamento farmacológico , Sirolimo/análogos & derivados , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos Alquilantes/administração & dosagem , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Dacarbazina/administração & dosagem , Dacarbazina/uso terapêutico , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Transferência de Genes , Humanos , Indóis/administração & dosagem , Lentivirus , Melanoma/metabolismo , Proteínas de Membrana/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Sirolimo/administração & dosagem , Sirolimo/uso terapêutico , Pele/metabolismo , Neoplasias Cutâneas/metabolismo , Sulfonamidas/administração & dosagem , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Temozolomida , Vemurafenib
14.
Wien Med Wochenschr ; 165(11-12): 251-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26065536

RESUMO

Intravenous application of high-dose ascorbate (vitamin C) has been used in complementary medicine since the 1970s to treat cancer patients. In recent years it became evident that high-dose ascorbate in the millimolar range bears selective cytotoxic effects on cancer cells in vitro and in vivo. This anticancer effect is dose dependent, catalyzed by serum components and mediated by reactive oxygen species and ascorbyl radicals, making ascorbate a pro-oxidative pro-drug that catalyzes hydrogen peroxide production in tissues instead of acting as a radical scavenger. It further depends on HIF-1 signaling and oxygen pressure, and shows a strong epigenetic signature (alteration of DNA-methylation and induction of tumor-suppressing microRNAs in cancer cells). The detailed understanding of ascorbate-induced antiproliferative molecular mechanisms warrants in-depth preclinical evaluation in cancer-bearing animal models for the optimization of an efficacious therapy regimen (e.g., combination with hyperbaric oxygen or O2-sensitizers) that subsequently need to be evaluated in clinical trials.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Fitoterapia , Células Tumorais Cultivadas/efeitos dos fármacos , Administração Oral , Animais , Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Terapia Combinada , Terapias Complementares/legislação & jurisprudência , Relação Dose-Resposta a Droga , Aprovação de Drogas/legislação & jurisprudência , Epigênese Genética/efeitos dos fármacos , União Europeia , Humanos , Infusões Intravenosas , Melanoma/tratamento farmacológico , Melanoma/genética , MicroRNAs/efeitos dos fármacos , MicroRNAs/genética , Espécies Reativas de Oxigênio/metabolismo , Gestão de Riscos/legislação & jurisprudência , Resultado do Tratamento
15.
J Exp Clin Cancer Res ; 43(1): 30, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263136

RESUMO

BACKGROUND: MEK inhibitors (MEKi) were shown to be clinically insufficiently effective in patients suffering from BRAF wild-type (BRAF WT) melanoma, even if the MAPK pathway was constitutively activated due to mutations in NRAS or NF-1. Thus, novel combinations are needed to increase the efficacy and duration of response to MEKi in BRAF WT melanoma. Disulfiram and its metabolite diethyldithiocarbamate are known to have antitumor effects related to cellular stress, and induction of endoplasmic reticulum (ER) stress was found to synergize with MEK inhibitors in NRAS-mutated melanoma cells. Therefore, we investigated the combination of both therapeutics to test their effects on BRAF-WT melanoma cells and compared them with monotherapy using the MEKi trametinib. METHODS: The effects of combined therapy with disulfiram or its metabolite diethyldithiocarbamate and the MEKi trametinib were evaluated in a series of BRAF-WT melanoma cell lines by measuring cell viability and apoptosis induction. Cytotoxicity was additionally assessed in 3D spheroids, ex vivo melanoma slice cultures, and in vivo xenograft mouse models. The response of melanoma cells to treatment was studied at the RNA and protein levels to decipher the mode of action. Intracellular and intratumoral copper measurements were performed to investigate the role of copper ions in the antitumor cytotoxicity of disulfiram and its combination with the MEKi. RESULTS: Diethyldithiocarbamate enhanced trametinib-induced cytotoxicity and apoptosis induction in 2D and 3D melanoma culture models. Mechanistically, copper-dependent induction of oxidative stress and ER stress led to Janus kinase (JNK)-mediated apoptosis in melanoma cells. This mechanism was also detectable in patient-derived xenograft melanoma models and resulted in a significantly improved therapeutic effect compared to monotherapy with the MEKi trametinib. CONCLUSIONS: Disulfiram and its metabolite represent an attractive pharmaceutical approach to induce ER stress in melanoma cells that potentiates the antitumor effect of MEK inhibition and may be an interesting candidate for combination therapy of BRAF WT melanoma.


Assuntos
Dissulfiram , Melanoma , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas B-raf , Cobre , Ditiocarb , Modelos Animais de Doenças , Quinases de Proteína Quinase Ativadas por Mitógeno
16.
Antioxidants (Basel) ; 12(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37107291

RESUMO

Despite the increasing number of newly diagnosed malignancies worldwide, therapeutic options for some tumor diseases are unfortunately still limited. Interestingly, preclinical but also some clinical data suggest that the administration of pharmacological ascorbate seems to respond well, especially in some aggressively growing tumor entities. The membrane transport and channel proteins are highly relevant for the use of pharmacological ascorbate in cancer therapy and are involved in the transfer of active substances such as ascorbate, hydrogen peroxide, and iron that predominantly must enter malignant cells to induce antiproliferative effects and especially ferroptosis. In this review, the relevant conveying proteins from cellular surfaces are presented as an integral part of the efficacy of pharmacological ascorbate, considering the already known genetic and functional features in tumor tissues. Accordingly, candidates for diagnostic markers and therapeutic targets are mentioned.

17.
Cancers (Basel) ; 15(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067230

RESUMO

INTRODUCTION: Patients with NRAS-mutant metastatic melanoma often have an aggressive disease requiring a fast-acting, effective therapy. The MEK inhibitor binimetinib shows an overall response rate of 15% in patients with NRAS-mutant melanoma, providing a backbone for combination strategies. Our previous studies demonstrated that in NRAS-mutant melanoma, the antitumor activity of the MEK inhibitor binimetinib was significantly potentiated by the BRAFV600E/K inhibitor encorafenib through the induction of ER stress, leading to melanoma cell death by apoptotic mechanisms. Encorafenib combined with binimetinib was well tolerated in a phase III trial showing potent antitumor activity in BRAF-mutant melanoma, making a rapid evaluation in NRAS-mutant melanoma imminently feasible. These data provide a mechanistic rationale for the evaluation of binimetinib combined with encorafenib in preclinical and clinical studies on NRAS-mutant metastatic melanoma. METHODS: The combination of BRAFi plus MEKi was tested in a monolayer culture of patient-derived cell lines and in corresponding patient-derived tissue slice cultures of NRAS-mutant melanoma. To investigate the treatment in vivo, NSG (NOD. Cg-PrkdcscidIl2rgtm1Wjl/SzJ) mice were subcutaneously injected with three different BRAF wild-type melanoma models harboring oncogenic NRAS mutations and treated orally with encorafenib (6 mg/kg body weight, daily) with or without binimetinib (8 mg/kg body weight, twice daily). In parallel, an individual healing attempt was carried out by treating one patient with an NRAS-mutated tumor. RESULTS: Encorafenib was able to enhance the inhibitory effect on cell growth of binimetinib only in the cell line SKMel147 in vitro. It failed to enhance the apoptotic effect found in two other NRAS-mutated cell lines. Encorafenib led to a hyperactivation of ERK which could be reduced with the combinational treatment. In two of the three patient-derived tissue slice culture models of NRAS-mutant melanomas, a slight tendency of a combinatorial effect was seen which was not significant. Encorafenib showed a slight induction of the ER stress genes ATF4, CHOP, and NUPR1. The combinational treatment was able to enhance this effect, but not significantly. In the mouse model, the combination therapy of encorafenib with binimetinib resulted in reduced tumor growth compared to the control and encorafenib groups; however, the best effect in terms of tumor growth inhibition was measured in the binimetinib therapy group. The therapy showed no effect in an individual healing attempt for a patient suffering from metastatic, therapy-refractory NRAS-mutated melanoma. CONCLUSION: In in vitro and ex vivo settings, the combination therapy was observed to elicit a response; however, it did not amplify the efficacy observed with binimetinib alone, whereas in a patient, the combinational treatment remained ineffective. The preclinical in vivo data showed no increased combinatorial effect. However, the in vivo effect of binimetinib as monotherapy was unexpectedly high in the tested regimen. Nevertheless, binimetinib proved to be advantageous in the treatment of melanoma in vivo and led to high rates of apoptosis in vitro; hence, it still seems to be a good base for combination with other substances in the treatment of patients with NRAS-mutant melanoma.

18.
Cells ; 12(2)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36672190

RESUMO

Ascorbate acts as a prooxidant when administered parenterally at high supraphysiological doses, which results in the generation of hydrogen peroxide in dependence on oxygen. Most cancer cells are susceptible to the emerging reactive oxygen species (ROS). Accordingly, we evaluated high-dose ascorbate for the treatment of the B16F10 melanoma model. To investigate the effects of ascorbate on the B16F10 cell line in vitro, viability, cellular impedance, and ROS production were analyzed. In vivo, C57BL/6NCrl mice were subcutaneously injected into the right flank with B16F10 cells and tumor-bearing mice were treated intraperitoneally with ascorbate (3 g/kg bodyweight), immunotherapy (anti-programmed cell death protein 1 (PD1) antibody J43; 2 mg/kg bodyweight), or both treatments combined. The efficacy and toxicity were analyzed by measuring the respective tumor sizes and mouse weights accompanied by histological analysis of the protein levels of proliferating cell nuclear antigen (Pcna), glucose transporter 1 (Glut-1), and CD3. Treatment of B16F10 melanoma-carrying mice with high-dose ascorbate yielded plasma levels in the pharmacologically effective range, and ascorbate showed efficacy as a monotherapy and when combined with PD1 inhibition. Our data suggest the applicability of ascorbate as an additional therapeutic agent that can be safely combined with immunotherapy and has the potential to potentiate anti-PD1-based immune checkpoint blockades.


Assuntos
Antineoplásicos , Melanoma , Animais , Camundongos , Espécies Reativas de Oxigênio , Camundongos Endogâmicos C57BL , Melanoma/tratamento farmacológico , Antineoplásicos/farmacologia , Melanoma Maligno Cutâneo
19.
Cancer Res Commun ; 3(9): 1743-1755, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37674529

RESUMO

The efficacy of targeting the MAPK signaling pathway in patients with melanoma is limited by the rapid development of resistance mechanisms that result in disease relapse. In this article, we focus on targeting the DNA repair pathway as an antimelanoma therapy, especially in MAPK inhibitor resistant melanoma cells using PARP inhibitors. We found that MAPK inhibitor resistant melanoma cells are particularly sensitive to PARP inhibitor treatment due to a lower basal expression of the DNA damage sensor ataxia-telangiectasia mutated (ATM). As a consequence, MAPK inhibitor resistant melanoma cells have decreased homologous recombination repair activity leading to a reduced repair of double-strand breaks caused by the PARP inhibitors. We validated the clinical relevance of our findings by ATM expression analysis in biopsies from patients with melanoma before and after development of resistance to MAPK inhibitors. Furthermore, we show that inhibition of the MAPK pathway induces a homologous recombination repair deficient phenotype in melanoma cells irrespective of their MAPK inhibitor sensitivity status. MAPK inhibition results in a synthetic lethal interaction of a combinatorial treatment with PARP inhibitors, which significantly reduces melanoma cell growth in vitro and in vivo. In conclusion, this study shows that PARP inhibitor treatment is a valuable therapy option for patients with melanoma, either as a single treatment or as a combination with MAPK inhibitors depending on ATM expression. Significance: We show that MAPK inhibitor resistant melanoma cells exhibit low ATM expression increasing their sensitivity toward PARP inhibitors and that a combination of MAPK/PARP inhibitors act synthetically lethal in melanoma cells. Our study shows that PARP inhibitor treatment is a valuable therapy option for patients with melanoma, either as a single treatment or as a combination with MAPK inhibitors depending on ATM expression, which could serve as a novel biomarker for treatment response.


Assuntos
Ataxia Telangiectasia , Melanoma , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Recidiva Local de Neoplasia , Melanoma/tratamento farmacológico , Proliferação de Células , Biópsia
20.
Eur J Cancer ; 182: 155-162, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739215

RESUMO

PURPOSE: Patients with cutaneous melanoma stage I/IIA disease are currently not eligible for adjuvant therapy, despite their risk for relapses and death. This study validates the ability of a model combining clinicopathologic factors with gene expression profiling (CP-GEP) to identify patients at high risk for disease recurrence in stage I/II and subgroup stage I/IIA. PATIENTS AND METHODS: 543 patients with stage I/II primary cutaneous melanoma from the University of Tuebingen diagnosed between 2000 and 2017 were analysed. All patients received sentinel lymph node biopsy (SLNB). Analysis was conducted for a separate group of 80 patients who did not undergo SLNB. RESULTS: CP-GEP stratified 424 stage I/IIA patients (78% of the cohort) according to their risk for recurrence, with five-year relapse-free survival (RFS) rates of 77.8% and 93% for CP-GEP high risk (195 patients) and low risk (229 patients), respectively, and hazard ratio of 3.53 (p-value <0.001). In patients who did not receive SLNB biopsy, CP-GEP captured 6 out of 7 relapses. CONCLUSION: CP-GEP can be used to identify primary cutaneous melanoma patients with a high risk for disease recurrence - especially for stage I/IIA, who are considered low risk by AJCC 8th. These patients may benefit from adjuvant therapy. Also, in the future, when SLNB may become irrelevant, CP-GEP may serve as a risk stratification tool.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/patologia , Neoplasias Cutâneas/patologia , Prognóstico , Perfilação da Expressão Gênica , Biópsia de Linfonodo Sentinela , Recidiva , Melanoma Maligno Cutâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA