Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bionanoscience ; 6(4): 325-328, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28133587

RESUMO

The length of telomeric DNA is often considered a cellular biomarker of aging and general health status. Several telomere length measuring assays have been developed, of which the most common is the Telomere Restriction Fragment (TRF) analysis, which typically involves the use of radioactively labeled oligonucleotide probes. While highly effective, this method potentially poses substantial health concerns and generates radioactive waste. Digoxigenin (DIG) alternatives to radioactive probes have been developed and used successfully in a number of assays. Here we optimize the DIG protocol to measure telomere length in the model plant Arabidopsis thaliana and present evidence that this approach can be used successfully to efficiently and accurately measure telomere length in plants. Specifically, hybridization temperature of 42 °C instead of the typical 55 °C appears to generate stronger signals. In addition, DIG incorporation at 5'-end instead of 3'-end of the labeled oligonucleotide greatly enhances signal. We conclude that non-radioactive TRF assays can be as efficient as radioactive methods in detecting and measuring telomere length in plants, making this assay suitable for medical and research laboratories unable to utilize radioactivity due to hazardous waste disposal and safety concerns.

2.
Bionanoscience ; 6(4): 407-410, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28191385

RESUMO

Plants harbor homologues of various animal genes involved in phosphorus metabolism, telomere biology and other cellular processes. Compared to experiments with many other multicellular organisms, research in the model plant Arabidopsis thaliana takes advantage of short generation time and an ever increasing arsenal of genetic and transgenic tools, including large collections of T-DNA knockout and activation lines. The availability of thousands of publicly available transgenic Arabidopsis lines provides a unique opportunity to address a number of important biological questions. However, identification of individual T-DNA mutant plants from a pool of seeds provided by a biological stock distribution center remains a laborious and time-consuming procedure. Here we compared a number of commercial Taq DNA polymerases commonly used for routine PCR genotyping to identify a single polymerase most suitable for genotyping T-DNA mutant plants. Our data indicate that Emerald Amp GT PCR Master Mix provides the most reliable, quick and simple DNA genotyping tool to determine the presence of a T-DNA insertion and to establish whether an individual A. thaliana plant is heterozygous or homozygous for the mutant allele.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA