Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 176(6): 1490-1501.e12, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30765112

RESUMO

Methylation of histone H3 K79 by Dot1L is a hallmark of actively transcribed genes that depends on monoubiquitination of H2B K120 (H2B-Ub) and is an example of histone modification cross-talk that is conserved from yeast to humans. We report here cryo-EM structures of Dot1L bound to ubiquitinated nucleosome that show how H2B-Ub stimulates Dot1L activity and reveal a role for the histone H4 tail in positioning Dot1L. We find that contacts mediated by Dot1L and the H4 tail induce a conformational change in the globular core of histone H3 that reorients K79 from an inaccessible position, thus enabling this side chain to insert into the active site in a position primed for catalysis. Our study provides a comprehensive mechanism of cross-talk between histone ubiquitination and methylation and reveals structural plasticity in histones that makes it possible for histone-modifying enzymes to access residues within the nucleosome core.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Animais , Domínio Catalítico , Cromatina/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/ultraestrutura , Histonas/química , Histonas/genética , Humanos , Metilação , Modelos Moleculares , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Receptor Cross-Talk , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação , Xenopus laevis
2.
Immunity ; 55(12): 2271-2284.e7, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36384135

RESUMO

The NLRP3 inflammasome plays a central role in antimicrobial defense as well as in the context of sterile inflammatory conditions. NLRP3 activity is governed by two independent signals: the first signal primes NLRP3, rendering it responsive to the second signal, which then triggers inflammasome formation. Our understanding of how NLRP3 priming contributes to inflammasome activation remains limited. Here, we show that IKKß, a kinase activated during priming, induces recruitment of NLRP3 to phosphatidylinositol-4-phosphate (PI4P), a phospholipid enriched on the trans-Golgi network. NEK7, a mitotic spindle kinase that had previously been thought to be indispensable for NLRP3 activation, was redundant for inflammasome formation when IKKß recruited NLRP3 to PI4P. Studying iPSC-derived human macrophages revealed that the IKKß-mediated NEK7-independent pathway constitutes the predominant NLRP3 priming mechanism in human myeloid cells. Our results suggest that PI4P binding represents a primed state into which NLRP3 is brought by IKKß activity.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Quinase I-kappa B , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Quinases Relacionadas a NIMA/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Rede trans-Golgi/metabolismo
3.
Nat Methods ; 19(1): 81-89, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34949807

RESUMO

CD4+ T cells are central mediators of adaptive and innate immune responses and constitute a major reservoir for human immunodeficiency virus (HIV) in vivo. Detailed investigations of resting human CD4+ T cells have been precluded by the absence of efficient approaches for genetic manipulation limiting our understanding of HIV replication and restricting efforts to find a cure. Here we report a method for rapid, efficient, activation-neutral gene editing of resting, polyclonal human CD4+ T cells using optimized cell cultivation and nucleofection conditions of Cas9-guide RNA ribonucleoprotein complexes. Up to six genes, including HIV dependency and restriction factors, were knocked out individually or simultaneously and functionally characterized. Moreover, we demonstrate the knock in of double-stranded DNA donor templates into different endogenous loci, enabling the study of the physiological interplay of cellular and viral components at single-cell resolution. Together, this technique allows improved molecular and functional characterizations of HIV biology and general immune functions in resting CD4+ T cells.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Infecções por HIV/genética , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/virologia , Proteína 9 Associada à CRISPR/genética , Movimento Celular/genética , Células Cultivadas , DNA , Técnicas de Inativação de Genes , Infecções por HIV/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , RNA Guia de Cinetoplastídeos , Proteína 1 com Domínio SAM e Domínio HD/genética , Transgenes , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(38): e2205691119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095189

RESUMO

The human Mixed Lineage Leukemia-1 (MLL1) complex methylates histone H3K4 to promote transcription and is stimulated by monoubiquitination of histone H2B. Recent structures of the MLL1-WRAD core complex, which comprises the MLL1 methyltransferase, WDR5, RbBp5, Ash2L, and DPY-30, have revealed variability in the docking of MLL1-WRAD on nucleosomes. In addition, portions of the Ash2L structure and the position of DPY30 remain ambiguous. We used an integrated approach combining cryoelectron microscopy (cryo-EM) and mass spectrometry cross-linking to determine a structure of the MLL1-WRAD complex bound to ubiquitinated nucleosomes. The resulting model contains the Ash2L intrinsically disordered region (IDR), SPRY insertion region, Sdc1-DPY30 interacting region (SDI-motif), and the DPY30 dimer. We also resolved three additional states of MLL1-WRAD lacking one or more subunits, which may reflect different steps in the assembly of MLL1-WRAD. The docking of subunits in all four states differs from structures of MLL1-WRAD bound to unmodified nucleosomes, suggesting that H2B-ubiquitin favors assembly of the active complex. Our results provide a more complete picture of MLL1-WRAD and the role of ubiquitin in promoting formation of the active methyltransferase complex.


Assuntos
Histona-Lisina N-Metiltransferase , Peptídeos e Proteínas de Sinalização Intracelular , Proteína de Leucina Linfoide-Mieloide , Nucleossomos , Ubiquitinação , Microscopia Crioeletrônica , Histona-Lisina N-Metiltransferase/química , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/genética , Nucleossomos/enzimologia , Ligação Proteica
5.
Mol Cell ; 64(6): 1135-1143, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27867008

RESUMO

RNA polymerase I (Pol I) is a 14-subunit enzyme that solely synthesizes pre-ribosomal RNA. Recently, the crystal structure of apo Pol I gave unprecedented insight into its molecular architecture. Here, we present three cryo-EM structures of elongating Pol I, two at 4.0 Å and one at 4.6 Å resolution, and a Pol I open complex at 3.8 Å resolution. Two modules in Pol I mediate the narrowing of the DNA-binding cleft by closing the clamp domain. The DNA is bound by the clamp head and by the protrusion domain, allowing visualization of the upstream and downstream DNA duplexes in one of the elongation complexes. During formation of the Pol I elongation complex, the bridge helix progressively folds, while the A12.2 C-terminal domain is displaced from the active site. Our results reveal the conformational changes associated with elongation complex formation and provide additional insight into the Pol I transcription cycle.


Assuntos
DNA/química , Subunidades Proteicas/química , RNA Polimerase I/química , RNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Expressão Gênica , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , RNA/genética , RNA/metabolismo , RNA Polimerase I/genética , RNA Polimerase I/isolamento & purificação , RNA Polimerase I/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33972407

RESUMO

Ocean warming and acidification threaten the future growth of coral reefs. This is because the calcifying coral reef taxa that construct the calcium carbonate frameworks and cement the reef together are highly sensitive to ocean warming and acidification. However, the global-scale effects of ocean warming and acidification on rates of coral reef net carbonate production remain poorly constrained despite a wealth of studies assessing their effects on the calcification of individual organisms. Here, we present global estimates of projected future changes in coral reef net carbonate production under ocean warming and acidification. We apply a meta-analysis of responses of coral reef taxa calcification and bioerosion rates to predicted changes in coral cover driven by climate change to estimate the net carbonate production rates of 183 reefs worldwide by 2050 and 2100. We forecast mean global reef net carbonate production under representative concentration pathways (RCP) 2.6, 4.5, and 8.5 will decline by 76, 149, and 156%, respectively, by 2100. While 63% of reefs are projected to continue to accrete by 2100 under RCP2.6, 94% will be eroding by 2050 under RCP8.5, and no reefs will continue to accrete at rates matching projected sea level rise under RCP4.5 or 8.5 by 2100. Projected reduced coral cover due to bleaching events predominately drives these declines rather than the direct physiological impacts of ocean warming and acidification on calcification or bioerosion. Presently degraded reefs were also more sensitive in our analysis. These findings highlight the low likelihood that the world's coral reefs will maintain their functional roles without near-term stabilization of atmospheric CO2 emissions.


Assuntos
Antozoários/fisiologia , Carbonato de Cálcio/metabolismo , Mudança Climática , Recifes de Corais , Animais , Antozoários/química , Carbonato de Cálcio/química , Humanos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar/química
7.
Infection ; 50(2): 381-394, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34379308

RESUMO

PURPOSE: To determine risk factors for coronavirus disease 2019 (COVID-19) in healthcare workers (HCWs), characterize symptoms, and evaluate preventive measures against SARS-CoV-2 spread in hospitals. METHODS: In a cross-sectional study conducted between May 27 and August 12, 2020, after the first wave of the COVID-19 pandemic, we obtained serological, epidemiological, occupational as well as COVID-19-related data at a quaternary care, multicenter hospital in Munich, Germany. RESULTS: 7554 HCWs participated, 2.2% of whom tested positive for anti-SARS-CoV-2 antibodies. Multivariate analysis revealed increased COVID-19 risk for nurses (3.1% seropositivity, 95% CI 2.5-3.9%, p = 0.012), staff working on COVID-19 units (4.6% seropositivity, 95% CI 3.2-6.5%, p = 0.032), males (2.4% seropositivity, 95% CI 1.8-3.2%, p = 0.019), and HCWs reporting high-risk exposures to infected patients (5.5% seropositivity, 95% CI 4.0-7.5%, p = 0.0022) or outside of work (12.0% seropositivity, 95% CI 8.0-17.4%, p < 0.0001). Smoking was a protective factor (1.1% seropositivity, 95% CI 0.7-1.8% p = 0.00018) and the symptom taste disorder was strongly associated with COVID-19 (29.8% seropositivity, 95% CI 24.3-35.8%, p < 0.0001). An unbiased decision tree identified subgroups with different risk profiles. Working from home as a preventive measure did not protect against SARS-CoV-2 infection. A PCR-testing strategy focused on symptoms and high-risk exposures detected all larger COVID-19 outbreaks. CONCLUSION: Awareness of the identified COVID-19 risk factors and successful surveillance strategies are key to protecting HCWs against SARS-CoV-2, especially in settings with limited vaccination capacities or reduced vaccine efficacy.


Assuntos
COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos Transversais , Pessoal de Saúde , Humanos , Masculino , Pandemias/prevenção & controle , Fatores de Risco , SARS-CoV-2
8.
J Biol Chem ; 295(2): 363-374, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31771982

RESUMO

Coagulation factor XII (FXII) drives production of the inflammatory peptide bradykinin. Pathological mutations in the F12 gene, which encodes FXII, provoke acute tissue swelling in hereditary angioedema (HAE). Interestingly, a recently identified F12 mutation, causing a W268R substitution, is not associated with HAE. Instead, FXII-W268R carriers experience cold-inducible urticarial rash, arthralgia, fever, and fatigue. Here, we aimed to investigate the molecular characteristics of the FXII-W268R variant. We expressed wild type FXII (FXII-WT), FXII-W268R, and FXII-T309R (which causes HAE), as well as other FXII variants in HEK293 freestyle cells. Using chromogenic substrate assays, immunoblotting, and ELISA, we analyzed expression media, cell lysates, and purified proteins for FXII activation. Recombinant FXII-W268R forms increased amounts of intracellular cleavage products that are also present in expression medium and display enzymatic activity. The active site-incapacitated variant FXII-W268R/S544A reveals that intracellular fragmentation is largely dependent on autoactivation. Purified FXII-W268R is highly sensitive to activation by plasma kallikrein and plasmin, compared with FXII-WT or FXII-T309R. Furthermore, binding studies indicated that the FXII-W268R variant leads to the exposure of a plasminogen-binding site that is cryptic in FXII-WT. In plasma, recombinant FXII-W268R spontaneously triggers high-molecular-weight kininogen cleavage. Our findings suggest that the W268R substitution influences FXII protein conformation and exposure of the activation loop, which is concealed in FXII-WT. This results in intracellular autoactivation and constitutive low-grade secretion of activated FXII. These findings help to explain the chronically increased contact activation in carriers of the FXII-W268R variant.


Assuntos
Fator XII/genética , Mutação Puntual , Substituição de Aminoácidos , Domínio Catalítico , Ativação Enzimática , Fator XII/química , Fator XII/metabolismo , Células HEK293 , Humanos , Kringles
10.
Nature ; 528(7581): 231-6, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26605533

RESUMO

Transcription of genes encoding small structured RNAs such as transfer RNAs, spliceosomal U6 small nuclear RNA and ribosomal 5S RNA is carried out by RNA polymerase III (Pol III), the largest yet structurally least characterized eukaryotic RNA polymerase. Here we present the cryo-electron microscopy structures of the Saccharomyces cerevisiae Pol III elongating complex at 3.9 Å resolution and the apo Pol III enzyme in two different conformations at 4.6 and 4.7 Å resolution, respectively, which allow the building of a 17-subunit atomic model of Pol III. The reconstructions reveal the precise orientation of the C82-C34-C31 heterotrimer in close proximity to the stalk. The C53-C37 heterodimer positions residues involved in transcription termination close to the non-template DNA strand. In the apo Pol III structures, the stalk adopts different orientations coupled with closed and open conformations of the clamp. Our results provide novel insights into Pol III-specific transcription and the adaptation of Pol III towards its small transcriptional targets.


Assuntos
Modelos Moleculares , RNA Polimerase III/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Microscopia Crioeletrônica , Ligação Proteica , Estrutura Terciária de Proteína
11.
Coral Reefs ; 40(4): 1137-1153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720372

RESUMO

A paramount challenge in coral reef ecology is to estimate the abundance and composition of the communities residing in such complex ecosystems. Traditional 2D projected surface cover estimates neglect the 3D structure of reefs and reef organisms, overlook communities residing in cryptic reef habitats (e.g., overhangs, cavities), and thus may fail to represent biomass estimates needed to assess trophic ecology and reef function. Here, we surveyed the 3D surface cover, biovolume, and biomass (i.e., ash-free dry weight) of all major benthic taxa on 12 coral reef stations on the island of Curaçao (Southern Caribbean) using structure-from-motion photogrammetry, coral point counts, in situ measurements, and elemental analysis. We then compared our 3D benthic community estimates to corresponding estimates of traditional 2D projected surface cover to explore the differences in benthic community composition using different metrics. Overall, 2D cover was dominated (52 ± 2%, mean ± SE) by non-calcifying phototrophs (macroalgae, turf algae, benthic cyanobacterial mats), but their contribution to total reef biomass was minor (3.2 ± 0.6%). In contrast, coral cover (32 ± 2%) more closely resembled coral biomass (27 ± 6%). The relative contribution of erect organisms, such as gorgonians and massive sponges, to 2D cover was twofold and 11-fold lower, respectively, than their contribution to reef biomass. Cryptic surface area (3.3 ± 0.2 m2 m-2 planar reef) comprised half of the total reef substrate, rendering two thirds of coralline algae and almost all encrusting sponges (99.8%) undetected in traditional assessments. Yet, encrusting sponges dominated reef biomass (35 ± 18%). Based on our quantification of exposed and cryptic reef communities using different metrics, we suggest adjustments to current monitoring approaches and highlight ramifications for evaluating the ecological contributions of different taxa to overall reef function. To this end, our metric conversions can complement other benthic assessments to generate non-invasive estimates of the biovolume, biomass, and elemental composition (i.e., standing stocks of organic carbon and nitrogen) of Caribbean coral reef communities. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00338-021-02118-6.

12.
J Anim Physiol Anim Nutr (Berl) ; 105 Suppl 2: 138-146, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31637783

RESUMO

Mastitis metritis agalactia (MMA) is a common disease in post-partum sows and has a negative effect on sows' longevity as well as on sows' and piglets' health. MMA leads to an inflammatory state. The aim was to investigate the impact of MMA on bone and fat metabolism. The hypothesis was that it is possible to predict MMA by measuring ketone bodies and bone markers. Blood samples from 175 sows were taken within 72 hr after farrowing. Serum was analysed for 25-hydroxyvitamin D (25-(OH)-D), serum crosslaps (CTX-I), osteocalcin (OC), alkaline phosphatase (ALP), calcium (Ca), magnesium (Mg), phosphorus (P), parathyroid hormone (PTH), triglycerides (TG), beta-hydroxybutyric acid (BHB), tumour necrosis factor-alpha (TNF-α) and haptoglobin. Spontaneous urine was collected, and pH value was measured in addition to Ca and P. A proximate analysis of the sows' diets was performed. Age, litter size, body condition score (BCS) and clinical signs of MMA were recorded for each sow. A multivariable logistic regression was undertaken with disease status (MMA or healthy) as the dependent variable. Significance was accepted at p < .05. MMA sows had a poorer BCS (p < .001) in relation to healthy sows. Age and number of piglets did not differ. MMA sows showed increased serum CTX-I (p = .004) and decreased serum OC (p < .001). Concentrations of P (p = .007), activity of ALP (p = .002) and BHB (p = .019) as well as TNF-α (p < .001) and haptoglobin (p = .048) concentrations were increased in MMA sows. No difference in urinary pH value between MMA and healthy sows was found. Our results are in accordance with the known fact that sows are in an extreme catabolic state peripartum. Bone metabolism in MMA sows is much more negatively affected than in healthy sows post-partum, due to inflammatory processes shown by higher concentrations of pro-inflammatory cytokines.


Assuntos
Tecido Adiposo/metabolismo , Osso e Ossos/metabolismo , Transtornos da Lactação , Mastite , Doenças dos Suínos , Animais , Feminino , Transtornos da Lactação/veterinária , Tamanho da Ninhada de Vivíparos , Mastite/veterinária , Período Pós-Parto , Gravidez , Suínos
14.
EMBO Rep ; 18(2): 264-279, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27974378

RESUMO

The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1-6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub-complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two-lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator.


Assuntos
Proteínas Fúngicas/química , Modelos Moleculares , Complexos Multiproteicos/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
15.
Clin Oral Investig ; 23(3): 1121-1132, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29959598

RESUMO

OBJECTIVES: Due to severe limitations of dental pulp sensitivity tests, the direct recording of pulsed blood flow, using photoplethysmography (PPG), has been proposed. In vivo evaluation is methodologically difficult and in vitro models have hitherto been adversely influenced by shortcomings in emulating the in vivo situation. Consequently, the aim of this study was to test an improved data acquisition system and to use this configuration for recording pulsed blood in a new model. MATERIALS AND METHODS: We introduced a PPG signal detection system by recording signals under different blood flow conditions at two wavelengths (625 and 940 nm). Pulsed blood flow signals were measured using an in vitro model, containing a molar with a glass pulp and a resin socket, which closely resembled in vivo conditions with regard to volumetric blood flow, pulp anatomy, and surrounding tissue. RESULTS: The detection system showed improved signal strength without stronger blanketing of noise. On the tooth surface, it was possible to detect signals emanating from pulsed blood flow from the glass pulp and from surrounding tissue at 625 nm. At 940 nm, pulp derived signals were recorded, without interference signals from surrounding tissue. CONCLUSION: The PPG-based method has the potential to detect pulsed blood flow in small volumes in the pulp and (at 625 nm) also in adjacent tissues. CLINICAL RELEVANCE: The results show the need for clear differentiation of the spatial origins of blood flow signals of any vitality test method to be applied to teeth.


Assuntos
Cavidade Pulpar , Teste da Polpa Dentária , Polpa Dentária , Fluxometria por Laser-Doppler , Dente Molar
16.
Glob Chang Biol ; 24(11): 5084-5095, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30152194

RESUMO

Increased temperature and CO2 levels are considered key drivers of coral reef degradation. However, individual assessments of ecological responses (calcification) to these stressors are often contradicting. To detect underlying drivers of heterogeneity in coral calcification responses, we developed a procedure for the inclusion of stress-effect relationships in ecological meta-analyses. We applied this technique to a dataset of 294 empirical observations from 62 peer-reviewed publications testing individual and combined effects of elevated temperature and pCO2 on coral calcification. Our results show an additive interaction between warming and acidification, which reduces coral calcification by 20% when pCO2 levels exceed 700 ppm and temperature increases by 3°C. However, stress levels varied among studies and significantly affected outcomes, with unaffected calcification rates under moderate stresses (pCO2  ≤ 700 ppm, ΔT < 3°C). Future coral reef carbon budgets will therefore depend on the magnitude of pCO2 and temperature elevations and, thus, anthropogenic CO2 emissions. Accounting for stress-effect relationships enabled us to identify additional drivers of heterogeneity including coral taxa, life stage, habitat, food availability, climate, and season. These differences can aid reef management identifying refuges and conservation priorities, but without a global effort to reduce CO2 emissions, coral capacity to build reefs will be at risk.


Assuntos
Antozoários/fisiologia , Calcificação Fisiológica , Mudança Climática , Animais , Dióxido de Carbono/metabolismo , Recifes de Corais , Ecossistema , Concentração de Íons de Hidrogênio , Estações do Ano , Água do Mar , Temperatura
17.
EMBO J ; 31(2): 279-90, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22085934

RESUMO

The Dcp1:Dcp2 decapping complex catalyses the removal of the mRNA 5' cap structure. Activator proteins, including Edc3 (enhancer of decapping 3), modulate its activity. Here, we solved the structure of the yeast Edc3 LSm domain in complex with a short helical leucine-rich motif (HLM) from Dcp2. The motif interacts with the monomeric Edc3 LSm domain in an unprecedented manner and recognizes a noncanonical binding surface. Based on the structure, we identified additional HLMs in the disordered C-terminal extension of Dcp2 that can interact with Edc3. Moreover, the LSm domain of the Edc3-related protein Scd6 competes with Edc3 for the interaction with these HLMs. We show that both Edc3 and Scd6 stimulate decapping in vitro, presumably by preventing the Dcp1:Dcp2 complex from adopting an inactive conformation. In addition, we show that the C-terminal HLMs in Dcp2 are necessary for the localization of the Dcp1:Dcp2 decapping complex to P-bodies in vivo. Unexpectedly, in contrast to yeast, in metazoans the HLM is found in Dcp1, suggesting that details underlying the regulation of mRNA decapping changed throughout evolution.


Assuntos
Regulação Fúngica da Expressão Gênica , Capuzes de RNA/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Drosophila melanogaster/genética , Evolução Molecular , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Capuzes de RNA/genética , RNA Fúngico/genética , RNA Mensageiro/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
18.
Clin Oral Investig ; 18(5): 1401-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24170040

RESUMO

OBJECTIVE: Noninvasive optical methods such as photoplethysmography, established for blood pulse detection in organs, have been proposed for vitality testing of human dental pulp. However, no information is available on the mechanism of action in a closed pulp chamber and on the impairing influence of other than pulpal blood flow sources. Therefore, the aim of the present in vitro study was to develop a device for the optical detection of pulpal blood pulse and to investigate the influence of different parameters (including gingival blood flow [GBF] simulation) on the derived signals. MATERIALS AND METHODS: Air, Millipore water, human erythrocyte suspensions (HES), non-particulate hemoglobin suspension (NPHS), and lysed hemoglobin suspension (LHES) were pulsed through a flexible (silicone) or a rigid (glass) tube placed within an extracted human molar in a tooth-gingiva model. HES was additionally pulsed through a rigid tube around the tooth, simulating GBF alone or combined with the flow through the tooth by two separate peristaltic pumps. Light from high-power light-emitting diodes (625 nm (red) and 940 nm (infrared [IR]); Golden Dragon, Osram, Germany) was introduced to the coronal/buccal part of the tooth, and the signal amplitude [∆U, in volts] of transmitted light was detected by a sensor at the opposite side of the tooth. Signal processing was carried out by means of a newly developed blood pulse detector. Finally, experiments were repeated with the application of rubber dam (blue, purple, pink, and black), aluminum foil, and black antistatic plastic foil. Nonparametric statistical analysis was applied (n = 5; α = 0.05). RESULTS: Signals were obtained for HES and LHES, but not with air, Millipore water, or NPHS. Using a flexible tube, signals for HES were higher for IR compared to red light, whereas for the rigid tube, the signals were significantly higher for red light than for IR. In general, significantly less signal amplitude was recorded for HES with the rigid glass tube than with the flexible tube, but it was still enough to be detected. ∆U from gingiva compared to tooth was significantly lower for red light and higher for IR. Shielding the gingiva was effective for 940 nm light and negligible for 625 nm light. CONCLUSIONS: Pulpal blood pulse can be optically detected in a rigid environment such as a pulp chamber, but GBF may interfere with the signal and the shielding effect of the rubber dam depends on the light wavelength used. CLINICAL RELEVANCE: The optically based recording of blood pulse may be a suitable method for pulp vitality testing, if improvements in the differentiation between different sources of blood pulse are possible.


Assuntos
Polpa Dentária/fisiologia , Modelos Biológicos , Pulso Arterial , Humanos
19.
Angew Chem Int Ed Engl ; 53(30): 7948-51, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24895233

RESUMO

Biomolecule interactions are central to pharmacology and diagnostics. These interactions can be quantified by thermophoresis, the directed molecule movement along a temperature gradient. It is sensitive to binding induced changes in size, charge, or conformation. Established capillary measurements require at least 0.5 µL per sample. We cut down sample consumption by a factor of 50, using 10 nL droplets produced with acoustic droplet robotics (Labcyte). Droplets were stabilized in an oil-surfactant mix and locally heated with an IR laser. Temperature increase, Marangoni flow, and concentration distribution were analyzed by fluorescence microscopy and numerical simulation. In 10 nL droplets, we quantified AMP-aptamer affinity, cooperativity, and buffer dependence. Miniaturization and the 1536-well plate format make the method high-throughput and automation friendly. This promotes innovative applications for diagnostic assays in human serum or label-free drug discovery screening.


Assuntos
Aptâmeros de Nucleotídeos/química , Proteínas de Transporte , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Conformação Molecular
20.
Nat Commun ; 15(1): 5420, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926341

RESUMO

As water miscible organic co-solvents are often required for enzyme reactions to improve e.g., the solubility of the substrate in the aqueous medium, an enzyme is required which displays high stability in the presence of this co-solvent. Consequently, it is of utmost importance to identify the most suitable enzyme or the appropriate reaction conditions. Until now, the melting temperature is used in general as a measure for stability of enzymes. The experiments here show, that the melting temperature does not correlate to the activity observed in the presence of the solvent. As an alternative parameter, the concentration of the co-solvent at the point of 50% protein unfolding at a specific temperature T in short c U 50 T is introduced. Analyzing a set of ene reductases, c U 50 T is shown to indicate the concentration of the co-solvent where also the activity of the enzyme drops fastest. Comparing possible rankings of enzymes according to melting temperature and c U 50 T reveals a clearly diverging outcome also depending on the specific solvent used. Additionally, plots of c U 50 versus temperature enable a fast identification of possible reaction windows to deduce tolerated solvent concentrations and temperature.


Assuntos
Estabilidade Enzimática , Desdobramento de Proteína , Solventes , Solventes/química , Temperatura , Temperatura de Transição , Oxirredutases/química , Oxirredutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA