Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunol Rev ; 324(1): 25-41, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38767210

RESUMO

Obesity presents a significant health challenge, affecting 41% of adults and 19.7% of children in the United States. One of the associated health challenges of obesity is chronic low-grade inflammation. In both mice and humans, T cells in circulation and in the adipose tissue play a pivotal role in obesity-associated inflammation. Changes in the numbers and frequency of specific CD4+ Th subsets and their contribution to inflammation through cytokine production indicate declining metabolic health, that is, insulin resistance and T2D. While some Th subset alterations are consistent between mice and humans with obesity, some changes mainly characterize male mice, whereas female mice often resist obesity and inflammation. However, protection from obesity and inflammation is not observed in human females, who can develop obesity-related T-cell inflammation akin to males. The decline in female sex hormones after menopause is also implicated in promoting obesity and inflammation. Age is a second underappreciated factor for defining and regulating obesity-associated inflammation toward translating basic science findings to the clinic. Weight loss in mice and humans, in parallel with these other factors, does not resolve obesity-associated inflammation. Instead, inflammation persists amid modest changes in CD4+ T cell frequencies, highlighting the need for further research into resolving changes in T-cell function after weight loss. How lingering inflammation after weight loss affecting the common struggle to maintain lower weight is unknown. Semaglutide, a newly popular pharmaceutical used for treating T2D and reversing obesity, holds promise for alleviating obesity-associated health complications, yet its impact on T-cell-mediated inflammation remains unexplored. Further work in this area could significantly contribute to the scientific understanding of the impacts of weight loss and sex/hormones in obesity and obesity-associated metabolic decline.


Assuntos
Inflamação , Obesidade , Humanos , Obesidade/imunologia , Obesidade/metabolismo , Animais , Inflamação/imunologia , Feminino , Tecido Adiposo/metabolismo , Camundongos , Masculino , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Modelos Animais de Doenças
2.
Immun Ageing ; 21(1): 36, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867294

RESUMO

BACKGROUND AND PURPOSE: The immune response changes during aging and the progression of Alzheimer's disease (AD) and related dementia (ADRD). Terminally differentiated effector memory T cells (called TEMRA) are important during aging and AD due to their cytotoxic phenotype and association with cognitive decline. However, it is not clear if the changes seen in TEMRAs are specific to AD-related cognitive decline specifically or are more generally correlated with cognitive decline. This study aimed to examine whether TEMRAs are associated with cognition and plasma biomarkers of AD, neurodegeneration, and neuroinflammation in a community-based cohort of older adults. METHODS: Study participants from a University of Kentucky Alzheimer's Disease Research Center (UK-ADRC) community-based cohort of aging and dementia were used to test our hypothesis. There were 84 participants, 44 women and 40 men. Participants underwent physical examination, neurological examination, medical history, cognitive testing, and blood collection to determine plasma biomarker levels (Aß42/Aß40 ratio, total tau, Neurofilament Light chain (Nf-L), Glial Fibrillary Acidic Protein (GFAP)) and to isolate peripheral blood mononuclear cells (PBMCs). Flow cytometry was used to analyze PBMCs from study participants for effector and memory T cell populations, including CD4+ and CD8+ central memory T cells (TCM), Naïve T cells, effector memory T cells (TEM), and effector memory CD45RA+ T cells (TEMRA) immune cell markers. RESULTS: CD8+ TEMRAs were positively correlated with Nf-L and GFAP. We found no significant difference in CD8+ TEMRAs based on cognitive scores and no associations between CD8+ TEMRAs and AD-related biomarkers. CD4+ TEMRAs were associated with cognitive impairment on the MMSE. Gender was not associated with TEMRAs, but it did show an association with other T cell populations. CONCLUSION: These findings suggest that the accumulation of CD8+ TEMRAs may be a response to neuronal injury (Nf-L) and neuroinflammation (GFAP) during aging or the progression of AD and ADRD. As our findings in a community-based cohort were not clinically-defined AD participants but included all ADRDs, this suggests that TEMRAs may be associated with changes in systemic immune T cell subsets associated with the onset of pathology.

3.
Nutrients ; 16(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38794641

RESUMO

Cytokines produced by peripheral T-helper 1/17 cells disproportionately contribute to the inflammation (i.e., metaflammation) that fuels type 2 diabetes (T2D) pathogenesis. Shifts in the nutrient milieu could influence inflammation through changes in T-cell metabolism. We aimed to determine whether changes in glucose utilization alter cytokine profiles in T2D. Peripheral blood mononuclear cells (PBMCs), CD4+ T-cells, and CD4+CD25- T-effector (Teff) cells were isolated from age-matched humans classified by glycemic control and BMI. Cytokines secreted by CD3/CD28-stimulated PBMCs and Teff were measured in supernatants with multiplex cytokine assays and a FLEXMAP-3D. Metabolic activity of stimulated CD4+ T-cells was measured by a Seahorse XFe96 analyzer. In this study, we demonstrated that T-cell stimulated PBMCs from non-fasted people with T2D produced higher amounts of cytokines compared to fasting. Although dysglycemia characterizes T2D, cytokine production by PBMCs or CD4+ T-cells in T2D was unaltered by hyperglycemic media. Moreover, pharmacological suppression of mitochondrial glucose oxidation did not change T-cell metabolism in T2D, yet enhanced cytokine competency. In conclusion, fasting and glucose metabolism differentially impact peripheral inflammation in human T2D, suggesting that glucose, along with fatty acid metabolites per our previous work, partner to regulate metaflammation. These data expose a major disconnect in the use of glycemic control drugs to target T2D-associated metaflammation.


Assuntos
Linfócitos T CD4-Positivos , Citocinas , Diabetes Mellitus Tipo 2 , Jejum , Inflamação , Leucócitos Mononucleares , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Leucócitos Mononucleares/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Glicemia/metabolismo , Glucose/metabolismo , Adulto , Idoso
4.
Geroscience ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761287

RESUMO

Aging is associated with the onset and progression of multiple diseases, which limit health span. Chronic low-grade inflammation in the absence of overt infection is considered the simmering source that triggers age-associated diseases. Failure of many cellular processes during aging is mechanistically linked to inflammation; however, the overall decline in the cellular homeostasis mechanism of autophagy has emerged as one of the top and significant inducers of inflammation during aging, frequently known as inflammaging. Thus, physiological or pharmacological interventions aimed at improving autophagy are considered geroprotective. Rapamycin analogs (rapalogs) are known for their ability to inhibit mTOR and thus regulate autophagy. This study assessed the efficacy of everolimus, a rapalog, in regulating inflammatory cytokine production in T cells from older adults. CD4+ T cells from older adults were treated with a physiological dose of everolimus (0.01 µM), and indices of autophagy and inflammation were assessed to gain a mechanistic understanding of the effect of everolimus on inflammation. Everolimus (Ever) upregulated autophagy and broadly alleviated inflammatory cytokines produced by multiple T cell subsets. Everolimus's ability to alleviate the cytokines produced by Th17 subsets of T cells, such as IL-17A and IL-17F, was dependent on autophagy and antioxidant signaling pathways. Repurposing the antineoplastic drug everolimus for curbing inflammaging is promising, given the drug's ability to restore multiple cellular homeostasis mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA