Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Dev Ind Pharm ; 41(3): 423-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24378199

RESUMO

In this study, Pasteurella multocida-loaded alginate microparticles (MPs) for subcutaneous vaccination was developed by emulsification-cross-linking technique. Formulation parameter was varied as a ratio of polymer and bacterin. Optical microscopy revealed spherical particles with uniformly distribution. A mean particle size of approximately 6 µm has been successfully constructed using simple mixer and ultrasonic probe. The zeta potential of the MPs showed negatively charge of approximately -23 mV determined by Zeta Pals® analyzer. The entrapment efficiency and the in vitro bacterin released profile could be controlled by varying the amount of alginate. The high entrapment efficiency up to 69% was achieved with low concentration of alginate. The MPs possessed a slow bacterin release profile, up to 30 days. In vivo safety and potency tests were proved that the alginate MPs were safe and induced protective immunity in mice. In addition, after storage for 6 months at either 4 °C or room temperature, the protective immunity in mice was maintained.


Assuntos
Alginatos/administração & dosagem , Vacinas Bacterianas/administração & dosagem , Septicemia Hemorrágica/prevenção & controle , Microesferas , Pasteurella multocida , Alginatos/síntese química , Animais , Vacinas Bacterianas/síntese química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/síntese química , Ácido Glucurônico/administração & dosagem , Ácido Glucurônico/síntese química , Septicemia Hemorrágica/patologia , Ácidos Hexurônicos/administração & dosagem , Ácidos Hexurônicos/síntese química , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos ICR
2.
Drug Deliv ; 27(1): 1054-1062, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32633144

RESUMO

The oral delivery of amphotericin B (AmB) has remained a challenge due to its low solubility, permeability, and instability in gastric acidic pH. To solve these issues, herein, we reported a novel approach of using nanostructured lipid carriers (NLCs) and NLCs coating with Eudragit®L100-55 (Eu-NLCs) for the oral delivery of AmB. This study aimed to compare their ability in protecting the drug from degradation in gastrointestinal fluids and permeation enhancement in Caco-2 cells. Uncoated NLCs and Eu-NLCs possessed a mean particle size of ∼180 and ∼550 nm, with a zeta potential of ∼-30 and ∼-50 mV, respectively. Both NLCs demonstrated an AmB entrapment efficiency up to ∼75%. They possessed significantly greater AmB water solubility than the free drug by up to 10-fold. In fasted state simulated gastric fluid, Eu-NLCs provided significantly greater AmB protection from acidic degradation than uncoated NLCs. In fasted state simulated intestinal fluid, both uncoated and Eu-NLCs showed a fast release characteristic. Caco-2 cells permeation studies revealed that uncoated NLCs provided significantly higher apparent permeation coefficient (P app) value than Eu-NLCs. Moreover, after 6 months of storage at 4 °C in the absence of light, the physicochemical stabilities of the lyophilized uncoated and Eu-NLCs could be maintained. In conclusion, the developed NLCs and Eu-NLCs could be a potential drug delivery system in improving the oral bioavailability of AmB.


Assuntos
Resinas Acrílicas , Anfotericina B/administração & dosagem , Anfotericina B/farmacocinética , Antifúngicos/administração & dosagem , Antifúngicos/farmacocinética , Lipídeos , Nanoestruturas , Administração Oral , Antígenos de Superfície , Disponibilidade Biológica , Células CACO-2 , Portadores de Fármacos , Ácido Gástrico , Humanos
3.
Pharmaceuticals (Basel) ; 13(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545189

RESUMO

Classified as a Biopharmaceutical Classification System (BCS) class IV drug, amphotericin B (AmB) has low aqueous solubility and low permeability leading to low oral bioavailability. To improve these limitations, this study investigated the potential of AmB-loaded polymeric micelles (AmB-PM) to increase intestinal absorption. AmB-PM were prepared with polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol copolymer (Soluplus®) as a polymeric carrier and used a modified solvent diffusion and microfluidics (NanoAssemblr®) method. AmB-PM have a mean particle size of ~80 nm and are mono-disperse with a polydispersity index <0.2. The entrapment efficiency of AmB was up to 95% and achieved with a high drug loading up to ~20% (w/w) with a total amount of incorporated drug of 1.08 ± 0.01 mg/mL. Importantly, compared to free drug, AmB-PM protected AmB from degradation in an acidic (simulated gastric) environment. Viability studies in Caco-2 cells confirmed the safety/low toxicity of AmB-PM. In vitro cellular absorption studies confirmed that AmB-PM increased AmB uptake in Caco-2 cells 6-fold more than free AmB (i.e., 25% compared with 4% within 30 min). Furthermore, the permeability of AmB across Caco-2 monolayers was significantly faster (2-fold) and more pronounced for AmB-PM in comparison to free drug (3.5-fold increase). Thus, the developed AmB-PM show promise as a novel oral delivery system for AmB and justifies further investigation.

4.
Curr Drug Deliv ; 16(7): 645-653, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31362675

RESUMO

BACKGROUND: Amphotericin B (AmB) is important for the treatment of systemic fungal infections. Nowadays, only intravenous administration (IV) of AmB has been available due to its low aqueous solubility. Two forms of AmB are available. The first is Fungizone®, a mixture of AmB and sodium deoxcycholate that produces severe nephrotoxicity. The second are lipid-based formulations that reduce nephrotoxicity, but they are costly and require higher dose than Fungizone®. Thus, a cheaper delivery system with reduced AmB toxicity is required. OBJECTIVE: To develop and characterize AmB loaded-nanostructured lipid carriers (AmB-loaded NLCs) for IV administration to reduce AmB toxicity. METHODS: AmB-loaded NLCs with different solid lipids were prepared by the high-pressure homogenization technique. Their physicochemical properties and the drug release profile were examined. The molecular structure of AmB, antifungal and hemolysis activities of developed AmB-loaded NLCs were also evaluated. RESULTS: AmB-loaded NLCs ~110 to ~140 nm in diameter were successfully produced with a zeta potential of ~-19 mV and entrapment efficiency of ~75%. In vitro release showed fast release characteristics. AmB-loaded NLCs could reduce the AmB molecular aggregation as evident from the absorbance ratio of the first to the fourth peak showing a partial aggregation of AmB. This result suggested that AmB-loaded NLCs could offer less nephrotoxicity compared to Fungizone®. In vitro antifungal activity of AmB-loaded NLCs showed a minimum inhibitory concentration of 0.25 µgmL-1. CONCLUSION: AmB-loaded NLCs present high potential carriers for effective IV treatment with prolonged circulation time and reduced toxicity.


Assuntos
Anfotericina B , Antifúngicos , Portadores de Fármacos , Nanoestruturas , Administração Intravenosa , Anfotericina B/administração & dosagem , Anfotericina B/química , Anfotericina B/toxicidade , Animais , Antifúngicos/administração & dosagem , Antifúngicos/química , Antifúngicos/toxicidade , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Lipídeos/administração & dosagem , Lipídeos/química , Lipídeos/toxicidade , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Nanoestruturas/toxicidade , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA