Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Med Sci Monit ; 22: 2386-91, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27391418

RESUMO

BACKGROUND We aimed to investigate the potential genetic relationships between the polymorphisms of gene rs5498 ICAM-1 and rs1041163 VCAM-1 and chronic periodontitis in a Chinese population within Heilongjiang. MATERIAL AND METHODS Genomic DNA was extracted from oral mucosa cells of 584 periodontal patients and 182 healthy individuals. Genotyping of the rs5498 ICAM-1 and rs1041163 VCAM-1 gene polymorphisms was performed with the Multiplex SNaPshot technique. RESULTS Statistically significant associations were identified between the chronic periodontal patients and the controls in the gene polymorphisms of rs5498 ICAM-1 (P=0.007) and rs1041163 VCAM-1 (P=0.029). The distribution of rs5498 (P=0.029) and rs1041163 (P=0.049) differed significantly across the mild, moderate, and severe groups of periodontitis. CONCLUSIONS Our findings indicate that ICAM-1 rs5498 and VCAM-1 rs1041163 polymorphisms contribute to chronic periodontitis, and ICAM-1 rs5498 and VCAM-1 rs1041163 gene polymorphisms might be associated with periodontitis severity in the Heilongjiang Chinese population. Further studies should be conducted to determine whether these polymorphisms could be used as biomarkers of periodontitis.


Assuntos
Molécula 1 de Adesão Intercelular/genética , Doenças Periodontais/genética , Molécula 1 de Adesão de Célula Vascular/genética , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , China/epidemiologia , Feminino , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Periodontais/epidemiologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco
2.
Front Bioeng Biotechnol ; 11: 1056707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873351

RESUMO

Background: The treatment of bone defects remains a clinical challenge. The effect of negative pressure wound therapy (NPWT) on osteogenesis in bone defects has been recognized; however, bone marrow fluid dynamics under negative pressure (NP) remain unknown. In this study, we aimed to examine the marrow fluid mechanics within trabeculae by computational fluid dynamics (CFD), and to verify osteogenic gene expression, osteogenic differentiation to investigate the osteogenic depth under NP. Methods: The human femoral head is scanned using micro-CT to segment the volume of interest (VOI) trabeculae. The VOI trabeculae CFD model simulating the bone marrow cavity is developed by combining the Hypermesh and ANSYS software. The effect of trabecular anisotropy is investigated, and bone regeneration effects are simulated under NP scales of -80, -120, -160, and -200 mmHg. The working distance (WD) is proposed to describe the suction depth of the NP. Finally, gene sequence analysis, cytological experiments including bone mesenchymal stem cells (BMSCs) proliferation and osteogenic differentiation are conducted after the BMSCs are cultured under the same NP scale. Results: The pressure, shear stress on trabeculae, and marrow fluid velocity decrease exponentially with an increase in WD. The hydromechanics of fluid at any WD inside the marrow cavity can be theoretically quantified. The NP scale significantly affects the fluid properties, especially those fluid close to the NP source; however, the effect of the NP scale become marginal as WD deepens. Anisotropy of trabecular structure coupled with the anisotropic hydrodynamic behavior of bone marrow; An NP of -120 mmHg demonstrates the majority of bone formation-related genes, as well as the most effective proliferation and osteogenic differentiation of BMSCs compared to the other NP scales. Conclusion: An NP of -120 mmHg may have the optimal activated ability to promote osteogenesis, but the effective WD may be limited to a certain depth. These findings help improve the understanding of fluid mechanisms behind NPWT in treating bone defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA