Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Hum Genet ; 69(6): 235-244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38424183

RESUMO

Dyssegmental dysplasia (DD) is a severe skeletal dysplasia comprised of two subtypes: lethal Silverman-Handmaker type (DDSH) and nonlethal Rolland-Desbuquois type (DDRD). DDSH is caused by biallelic pathogenic variants in HSPG2 encoding perlecan, whereas the genetic cause of DDRD remains undetermined. Schwartz-Jampel syndrome (SJS) is also caused by biallelic pathogenic variants in HSPG2 and is an allelic disorder of DDSH. In SJS and DDSH, 44 and 8 pathogenic variants have been reported in HSPG2, respectively. Here, we report that five patients with DDRD carried four pathogenic variants in HSPG2: c.9970 G > A (p.G3324R), c.559 C > T (p.R187X), c7006 + 1 G > A, and c.11562 + 2 T > G. Two patients were homozygous for p.G3324R, and three patients were heterozygous for p.G3324R. Haplotype analysis revealed a founder haplotype spanning 85,973 bp shared in the five patients. SJS, DDRD, and DDSH are allelic disorders with pathogenic variants in HSPG2.


Assuntos
Haplótipos , Proteoglicanas de Heparan Sulfato , Osteocondrodisplasias , Feminino , Humanos , Masculino , Alelos , Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/patologia , Efeito Fundador , Proteoglicanas de Heparan Sulfato/genética , Mutação , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Doenças Fetais
2.
J Hum Genet ; 69(7): 321-327, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565611

RESUMO

Spondylocostal dysostosis (SCDO) encompasses a group of skeletal disorders characterized by multiple segmentation defects in the vertebrae and ribs. SCDO has a complex genetic etiology. This study aimed to analyze and identify pathogenic variants in a fetus with SCDO. Copy number variant sequencing and whole exome sequencing were performed on a Chinese fetus with SCDO, followed by bioinformatics analyses, in vitro functional assays and a systematic review on the reported SCDO cases with LFNG pathogenic variants. Ultrasound examinations in utero exhibited that the fetus had vertebral malformation, scoliosis and tethered cord, but rib malformation was not evident. We found a novel homozygous variant (c.1078 C > T, p.R360C) within the last exon of LFNG. The variant was predicted to cause loss of function of LFNG by in silico prediction tools, which was confirmed by an in vitro assay of LFNG enzyme activity. The systematic review listed a total of 20 variants of LFNG in SCDO. The mutational spectrum spans across all exons of LFNG except the last one. This study reported the first Chinese case of LFNG-related SCDO, revealing the prenatal phenotypes and expanding the mutational spectrum of the disorder.


Assuntos
Sequenciamento do Exoma , Humanos , Feminino , Feto/anormalidades , Gravidez , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Mutação , Meningomielocele/genética , Meningomielocele/diagnóstico por imagem , Variações do Número de Cópias de DNA , Povo Asiático/genética , População do Leste Asiático , Hérnia Diafragmática
3.
J Hum Genet ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014191

RESUMO

Camurati-Engelmann disease (CED) is an autosomal dominant bone dysplasia characterized by progressive hyperostosis of the skull base and diaphyses of the long bones. CED is further divided into two subtypes, CED1 and CED2, according to the presence or absence of TGFB1 mutations, respectively. In this study, we used exome sequencing to investigate the genetic cause of CED2 in three pedigrees and identified two de novo heterozygous mutations in TGFB2 among the three patients. Both mutations were located in the region of the gene encoding the straitjacket subdomain of the latency-associated peptide (LAP) of pro-TGF-ß2. Structural simulations of the mutant LAPs suggested that the mutations could cause significant conformational changes and lead to a reduction in TGF-ß2 inactivation. An activity assay confirmed a significant increase in TGF-ß2/SMAD signaling. In vitro osteogenic differentiation experiment using iPS cells from one of the CED2 patients showed significantly enhanced ossification, suggesting that the pathogenic mechanism of CED2 is increased activation of TGF-ß2 by loss-of-function of the LAP. These results, in combination with the difference in hyperostosis patterns between CED1 and CED2, suggest distinct functions between TGFB1 and TGFB2 in human skeletal development and homeostasis.

4.
Clin Genet ; 105(1): 87-91, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619988

RESUMO

Skeletal ciliopathies are a heterogenous group of congenital disorders characterized by multiple internal abnormalities, and distinct radiographic presentation. Pathogenic variants in at least 30 cilia genes are known to cause skeletal ciliopathies. Here we report a fetus with an atypical skeletal ciliopathy phenotype and compound heterozygous variants in the RAB34 gene. The affected fetus had multiple malformations, including posterior neck edema, micrognathia, low-set and small ears, auricular hypoplasia, cleft lip and palate, short extremities, and a combination of rarely occurring pre- and postaxial polydactyly. Genome sequencing identified compound heterozygous variants in the RAB34 gene: maternal c.254T>C, p.(Ile85Thr), and paternal c.691C>T, p.(Arg231*) variants. Only the paternal variant was present in the unaffected sibling. Evidence in the literature indicated that Rab34-/- mice displayed a ciliopathy phenotype with cleft palate and polydactyly. These features were consistent with malformations detected in our patient supporting the pathogenicity of the identified RAB34 variants. Overall, this case report further expands genetic landscape of human ciliopathy syndromes and suggests RAB34 as a candidate gene for skeletal ciliopathies.


Assuntos
Anormalidades Múltiplas , Ciliopatias , Fenda Labial , Fissura Palatina , Polidactilia , Humanos , Animais , Camundongos , Fissura Palatina/diagnóstico por imagem , Fissura Palatina/genética , Ciliopatias/diagnóstico por imagem , Ciliopatias/genética , Ciliopatias/patologia , Polidactilia/genética , Anormalidades Múltiplas/genética , Síndrome , Proteínas rab de Ligação ao GTP/genética
5.
Clin Genet ; 106(3): 360-366, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38801004

RESUMO

Biallelic variants in PISD cause a phenotypic spectrum ranging from short stature with spondyloepimetaphyseal dysplasia (SEMD) to a multisystem disorder affecting eyes, ears, bones, and brain. PISD encodes the mitochondrial-localized enzyme phosphatidylserine decarboxylase. The PISD precursor is self-cleaved to generate a heteromeric mature enzyme that converts phosphatidylserine to the phospholipid phosphatidylethanolamine. We describe a 17-year-old male patient, born to unrelated healthy parents, with disproportionate short stature and SEMD, featuring platyspondyly, prominent epiphyses, and metaphyseal dysplasia. Trio genome sequencing revealed compound heterozygous PISD variants c.569C>T; p.(Ser190Leu) and c.799C>T; p.(His267Tyr) in the patient. Investigation of fibroblasts showed similar levels of the PISD precursor protein in both patient and control cells. However, patient cells had a significantly higher proportion of fragmented mitochondria compared to control cells cultured under basal condition and after treatment with 2-deoxyglucose that represses glycolysis and stimulates respiration. Structural data from the PISD orthologue in Escherichia coli suggest that the amino acid substitutions Ser190Leu and His267Tyr likely impair PISD's autoprocessing activity and/or phosphatidylethanolamine biosynthesis. Based on the data, we propose that the novel PISD p.(Ser190Leu) and p.(His267Tyr) variants likely act as hypomorphs and underlie the pure skeletal phenotype in the patient.


Assuntos
Carboxiliases , Mitocôndrias , Mutação de Sentido Incorreto , Osteocondrodisplasias , Humanos , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Masculino , Mutação de Sentido Incorreto/genética , Adolescente , Mitocôndrias/genética , Mitocôndrias/patologia , Carboxiliases/genética , Alelos , Fenótipo , Nanismo/genética , Nanismo/patologia
6.
Am J Med Genet A ; 194(6): e63562, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38337186

RESUMO

Biallelic pathogenic variants in RMRP, the gene encoding the RNA component of RNase mitochondrial RNA processing enzyme complex, have been reported in individuals with cartilage hair hypoplasia (CHH). CHH is prevalent in Finnish and Amish populations due to a founder pathogenic variant, n.71A > G. Based on the manifestations in the Finnish and Amish individuals, the hallmarks of CHH are prenatal-onset growth failure, metaphyseal dysplasia, hair hypoplasia, immunodeficiency, and other extraskeletal manifestations. Herein, we report six Japanese individuals with CHH from four families. All probands presented with moderate short stature with mild metaphyseal dysplasia or brachydactyly. One of them had hair hypoplasia and the other immunodeficiency. By contrast, the affected siblings of two families showed only mild short stature. We also reviewed all previously reported 13 Japanese individuals. No n.71A > G allele was detected. The proportions of Japanese versus Finnish individuals were 0% versus 70% for birth length < -2.0 SD, 84% versus 100% for metaphyseal dysplasia and 26% versus 88% for hair hypoplasia. Milder manifestations in the Japanese individuals may be related to the difference of genotypes. The mildest form of CHH phenotypes is mild short stature without overt skeletal alteration or extraskeletal manifestation and can be termed "RMRP-related short stature".


Assuntos
Cabelo , Osteocondrodisplasias , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Alelos , Nanismo/genética , Nanismo/patologia , População do Leste Asiático , Genótipo , Cabelo/anormalidades , Cabelo/patologia , Doença de Hirschsprung/genética , Doença de Hirschsprung/patologia , Doença de Hirschsprung/diagnóstico , Japão/epidemiologia , Mutação/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Osteocondrodisplasias/congênito , Linhagem , Fenótipo , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/patologia , RNA Longo não Codificante/genética
7.
Radiographics ; 44(5): e230153, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38602868

RESUMO

RASopathies are a heterogeneous group of genetic syndromes caused by germline mutations in a group of genes that encode components or regulators of the Ras/mitogen-activated protein kinase (MAPK) signaling pathway. RASopathies include neurofibromatosis type 1, Legius syndrome, Noonan syndrome, Costello syndrome, cardiofaciocutaneous syndrome, central conducting lymphatic anomaly, and capillary malformation-arteriovenous malformation syndrome. These disorders are grouped together as RASopathies based on our current understanding of the Ras/MAPK pathway. Abnormal activation of the Ras/MAPK pathway plays a major role in development of RASopathies. The individual disorders of RASopathies are rare, but collectively they are the most common genetic condition (one in 1000 newborns). Activation or dysregulation of the common Ras/MAPK pathway gives rise to overlapping clinical features of RASopathies, involving the cardiovascular, lymphatic, musculoskeletal, cutaneous, and central nervous systems. At the same time, there is much phenotypic variability in this group of disorders. Benign and malignant tumors are associated with certain disorders. Recently, many institutions have established multidisciplinary RASopathy clinics to address unique therapeutic challenges for patients with RASopathies. Medications developed for Ras/MAPK pathway-related cancer treatment may also control the clinical symptoms due to an abnormal Ras/MAPK pathway in RASopathies. Therefore, radiologists need to be aware of the concept of RASopathies to participate in multidisciplinary care. As with the clinical manifestations, imaging features of RASopathies are overlapping and at the same time diverse. As an introduction to the concept of RASopathies, the authors present major representative RASopathies, with emphasis on their imaging similarities and differences. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.


Assuntos
Síndrome de Costello , Displasia Ectodérmica , Cardiopatias Congênitas , Síndrome de Noonan , Recém-Nascido , Humanos , Síndrome de Noonan/diagnóstico por imagem , Síndrome de Noonan/genética , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/genética , Displasia Ectodérmica/diagnóstico por imagem , Displasia Ectodérmica/genética , Radiologistas
8.
Jpn J Radiol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012450

RESUMO

Childhood interstitial lung diseases (chILDs) encompass a diverse group of disorders with a high mortality rate and severe respiratory morbidities. Recent investigations have revealed that the classification of adult ILDs is not valid for chILDs, particularly for ILDs of early onset. Therefore, Children's Interstitial Lung Disease Research Cooperative of North America proposed a new classification of chILDs for affected children under 2 years of age, and later another classification for affected individuals between 2 and 18 years of age. In this review, we provide an overview of the imaging findings of chILDs by classification. Most infantile ILDs have unique clinical, radiological, and molecular findings, while the manifestation of pediatric ILDs overlaps with that of adult ILDs.

9.
Eur J Med Genet ; 70: 104955, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857829

RESUMO

CCP110 (centriolar coiled coil protein 110, also known as CP110) is one of the essential proteins localized in the centrosome that plays critical roles in the regulation of the cell cycle and also in the initiation of ciliogenesis. So far, no human congenital disorders have been identified to be associated with pathogenic variants of CCP110. Mice with biallelic loss-of-function variants of Ccp110 (Ccp110-/-) are known to manifest multiple organ defects, including a small body size, polydactyly, omphalocele, congenital heart defects, cleft palate, short ribs, and a small thoracic cage, a pattern of abnormalities closely resembling that in "ciliopathies" in humans. Herein, we report a 7-month-old male infant who presented with growth failure and skeletal abnormalities, including a narrow thorax and severe brachydactyly. Trio exome analysis of the genomic DNA of the patient and his parents showed that the patient was a compound heterozygote for truncating variants of CCP110, including a frameshift variant NM_001323572.2:c.856_857del, p.(Val286Leufs*5) inherited from the father, and a nonsense variant NM_001323572.2:c.1129C>T, p.(Arg377*) inherited from the mother. The strikingly similar pattern of malformations between Ccp110-/- mice and the 7-month-old male infant reported herein carrying unequivocal truncating CCP110 variants strongly supports the contention that CCP110 is a novel disease-causative gene.


Assuntos
Proteínas de Ciclo Celular , Ciliopatias , Fenótipo , Humanos , Masculino , Ciliopatias/genética , Ciliopatias/patologia , Lactente , Proteínas de Ciclo Celular/genética , Mutação com Perda de Função , Proteínas Associadas aos Microtúbulos/genética , Alelos , Proteínas do Citoesqueleto
10.
Eur J Med Genet ; 68: 104913, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286305

RESUMO

BACKGROUND: Familial Adenomatous Polyposis (FAP) is a colorectal cancer (CRC) predisposition syndrome caused by germline APC mutations and characterised by an increased risk of CRC and colonic polyps and, in certain forms, of specific prominent extraintestinal manifestations, namely osteomas, soft tissue tumours and dental anomalies. Pachydysostosis of the fibula is a rare clinical entity defined by unilateral bowing of the distal portion of the fibula and elongation of the entire bone, without affectation of the tibia. CLINICAL REPORT: We report a 17-year-old male, who presented with a non-progressive bowing of the right leg detected at 18 months of age caused by a fibula malformation (later characterized as pachydysostosis) and a large exophytic osteoma of the left radius, noticed at the age of 15 years, without gastrointestinal symptoms. There was no relevant family history. Detailed characterisation revealed multiple osteomas, skin lesions and dental abnormalities, raising the hypothesis of FAP. This diagnosis was confirmed by genetic testing [c.4406_4409dup p.(Ala1471Serfs*17) de novo mutation in the APC gene] and endoscopic investigation (multiple adenomas throughout the colon, ileum and stomach). DISCUSSION: This case report draws attention to the phenotypic spectrum of skeletal manifestations of FAP: this patient has a congenital fibula malformation, not previously associated with this syndrome, but which is likely to have been its first manifestation in this patient. This clinical case also illustrates the challenges in the early diagnosis of FAP, especially without family history, and highlights the importance of a multidisciplinary approach and the adequate study of rare skeletal abnormalities.


Assuntos
Polipose Adenomatosa do Colo , Osteoma , Masculino , Humanos , Adolescente , Proteína da Polipose Adenomatosa do Colo/genética , Fíbula/diagnóstico por imagem , Fíbula/patologia , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/diagnóstico , Genes APC , Mutação em Linhagem Germinativa , Osteoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA