Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Microbiol ; 21(1): 41, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563209

RESUMO

BACKGROUND: Fructophilic lactic acid bacteria (FLAB) found in D-fructose rich niches prefer D-fructose over D-glucose as a growth substrate. They need electron acceptors for growth on D-glucose. The organisms share carbohydrate metabolic properties. Fructobacillus spp., Apilactobacillus kunkeei, and Apilactobacillus apinorum are members of this unique group. Here we studied the fructophilic characteristics of recently described species Apilactobacillus micheneri, Apilactobacillus quenuiae, and Apilactobacillus timberlakei. RESULTS: The three species prefer D-fructose over D-glucose and only metabolize D-glucose in the presence of electron acceptors. The genomic characteristics of the three species, i.e. small genomes and thus a low number of coding DNA sequences, few genes involved in carbohydrate transport and metabolism, and partial deletion of adhE gene, are characteristic of FLAB. The three species thus are novel members of FLAB. Reduction of genes involved in carbohydrate transport and metabolism in accordance with reduction of genome size were the common characteristics of the family Lactobacillaceae, but FLAB markedly reduced the gene numbers more than other species in the family. Pan-genome analysis of genes involved in metabolism displayed a lack of specific carbohydrate metabolic pathways in FLAB, leading to a unique cluster separation. CONCLUSIONS: The present study expanded FLAB group. Fructose-rich environments have induced similar evolution in phylogenetically distant FLAB species. These are examples of convergent evolution of LAB.


Assuntos
Adaptação Fisiológica , Frutose/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Leuconostocaceae/classificação , Leuconostocaceae/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Genoma Bacteriano , Genômica , Glucose/metabolismo , Lactobacillales/classificação , Leuconostocaceae/metabolismo , Filogenia
2.
Biosci Microbiota Food Health ; 43(1): 29-42, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188660

RESUMO

Cocoa bean fermentation is typically performed in a spontaneous manner on farms in tropical countries or areas and involves several microbial groups. Metabolism by microbes markedly affects the quality of cocoa beans fermented and the chocolate produced thereof. The present study characterized the microbiota and their metabolic profiles in temperature- and humidity-controlled intra-factory cocoa fermentation in a semitropical area of Japan. Although environmental factors were uniform, the microbiota of cocoa beans subjected to intra-factory fermentation was not stable between tests, particularly in terms of the cell count levels and species observed. Fermentation was sometimes delayed, and fermenting microbes were present at very low levels after 24 hr of fermentation. Due to the unstable microbiota, the profiles of water-soluble compounds differed between tests, indicating the unstable qualities of the fermented cocoa beans. These results suggest the necessity of starter cultures not only in on-farm fermentation but also in machine-controlled intra-factory cocoa fermentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA