Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Food Sci Technol ; 61(1): 161-168, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38192711

RESUMO

In this work, pilot-scale nanofiltration was used to obtain aqueous solutions rich in hydroxytyrosol and tyrosol from olive oil by-products. A large-scale simple process involving olive mill standard machinery (blender and decanter) was used for the olive pomace pre-treatment with water. The aqueous extract was then directly fed to a nanofiltration unit and concentrated by reverse osmosis. Final concentration factors ranged between 7 and 9 for hydroxytyrosol and between 4 and 7 for tyrosol. The final aqueous solution, obtained as retentate stream of reverse osmosis, was highly concentrated in hydroxytyrosol and tyrosol and their concentrations remained stable over at least 14 months.

2.
Chemphyschem ; 20(21): 2767-2773, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31424158

RESUMO

Modelling, predicting, and understanding the factors influencing the viscosities of ionic liquids and related mixtures are sequentially checked in this work. The molecular maps of atom-level properties (MOLMAP codification system) is adapted for a straightforward inclusion of ionic liquids and mixtures containing ionic liquids. Random Forest models have been tested in this context and an optimal model was selected. The interpretability of the selected Random Forest model is highlighted with selected structural features that might contribute to identify low viscosities. The constructed model is able to recognize the influence of different structural variables, temperature, and pressure for a correct classification of the different systems. The codification and interpretation systems are highlighted in this work.

4.
ChemSusChem ; 9(10): 1081-4, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27114238

RESUMO

The efficient transformation of carbon dioxide into fuels can be an excellent alternative to sequestration. In this work, we describe CO2 hydrogenation to methane in imidazolium-based ionic liquid media, using ruthenium nanoparticles prepared in situ as catalyst. The best yield of methane (69 %) was achieved using 0.24 mol % ruthenium catalyst (in [omim][NTf2 ], 1-octyl-3-methylimidazolium bistrifluoromethanesulfonylimide, at 40 bar of hydrogen pressure plus 40 bar of CO2 pressure, and at 150 °C.


Assuntos
Dióxido de Carbono/química , Líquidos Iônicos/química , Nanopartículas Metálicas/química , Metano/química , Rutênio/química , Hidrogenação , Imidazóis/química , Temperatura
5.
J Am Chem Soc ; 127(18): 6542-3, 2005 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-15869269

RESUMO

Lower critical solution temperatures (LCST)-type of phase diagrams, including the presence of closed loops, have been encountered for the first time in binary and quasi-binary liquid solutions of ionic liquids. Furthermore, the results constitute the first experimental support for the existence of a theoretically postulated, but never encountered, special kind of type VII phase diagram. Two distinct mechanisms are involved in the appearance of demixing upon temperature increase. These findings underlie the presence of specific, oriented interactions between the ionic liquid, 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide, [Cnmim][NTf2], and trichloromethane, as well as aggregation phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA