Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 118(24): 240403, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665652

RESUMO

Topological defects in Bloch bands, such as Dirac points in graphene, and their resulting Berry phases play an important role for the electronic dynamics in solid state crystals. Such defects can arise in systems with a two-atomic basis due to the momentum-dependent coupling of the two sublattice states, which gives rise to a pseudospin texture. The topological defects appear as vortices in the azimuthal phase of this pseudospin texture. Here, we demonstrate a complete measurement of the azimuthal phase in a hexagonal optical lattice employing a versatile method based on time-of-flight imaging after off-resonant lattice modulation. Furthermore, we map out the merging transition of the two Dirac points induced by beam imbalance. Our work paves the way to accessing geometric properties in optical lattices also with spin-orbit coupling and interactions.

2.
IEEE Comput Graph Appl ; PP2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250367

RESUMO

We present Q-Seg, a novel unsupervised image segmentation method based on quantum annealing, tailored for existing quantum hardware. We formulate the pixel- wise segmentation problem, which assimilates spectral and spatial information of the image, as a graph-cut optimization task. Our method efficiently leverages the interconnected qubit topology of the D-Wave Advantage device, offering superior scalability over existing quantum approaches and outperforming several tested state-of-the-art classical methods. Empirical evaluations on synthetic datasets have shown that Q-Seg has better runtime performance than the state-of-the-art classical optimizer Gurobi. The method has also been tested on earth observation image segmentation, a critical area with noisy and unreliable annotations. In the era of noisy intermediate-scale quantum, Q-Seg emerges as a reliable contender for real-world applications in comparison to advanced techniques like Segment Anything. Consequently, Q-Seg offers a promising solution using available quantum hardware, especially in situations constrained by limited labeled data and the need for efficient computational runtime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA