Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 31(8): 1381-1394, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34244229

RESUMO

Hydroxycarbamide (HC, hydroxyurea) is a cytoreductive drug inducing cell cycle blockade. However, emerging evidence suggests that HC plays a role in the modulation of transcription through the activity of transcription factors and DNA methylation. Examining the global mechanism of action of HC in the context of myeloproliferative neoplasms (MPNs), for which HC is the first-line treatment, will provide a better understanding of its molecular effects. To explore the effects of HC genome-wide, transcriptomic analyses were performed on two clinically relevant cell types at different stages of differentiation treated with HC in a murine MPN model. This study was replicated in MPN patients by profiling genome-wide gene expression and DNA methylation using patient blood samples collected longitudinally, before and following HC exposure. The effects of HC on the transcriptome were not only associated with cell cycle interruption but also with hematopoietic functions. Moreover, a group of genes were restored to normal expression levels in murine hematopoietic stem cells (HSCs) following drug treatment, including the master regulator of hematopoiesis, RUNX1 In humans, HC significantly modifies DNA methylation levels in HSCs at several distal regulatory regions, which we show to be associated with SPI1 binding sites and at the SPI1 locus itself. We have identified novel targets of HC that include pivotal transcription factors involved in hematopoiesis, and for the first time we report abnormal methylation patterns in MPN patients at the master regulator gene SPI1 and its distal binding sites, which HC is able to restore to normal levels.


Assuntos
Metilação de DNA , Neoplasias , Animais , Hematopoese/genética , Humanos , Hidroxiureia/farmacologia , Camundongos , Neoplasias/genética , Transcriptoma
2.
PLoS Genet ; 16(4): e1008599, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32271759

RESUMO

In 1993, Denise Barlow proposed that genomic imprinting might have arisen from a host defense mechanism designed to inactivate retrotransposons. Although there were few examples at hand, she suggested that there should be maternal-specific and paternal-specific factors involved, with cognate imprinting boxes that they recognized; furthermore, the system should build on conserved biochemical factors, including DNA methylation, and maternal control should predominate for imprints. Here, we revisit this hypothesis in the light of recent advances in our understanding of host defense and DNA methylation and in particular, the link with Krüppel-associated box-zinc finger (KRAB-ZF) proteins.


Assuntos
Inativação Gênica , Impressão Genômica , Modelos Genéticos , Retroelementos/genética , Animais , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/metabolismo
3.
Development ; 146(9)2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31023876

RESUMO

The endocardium interacts with the myocardium to promote proliferation and morphogenesis during the later stages of heart development. However, the role of the endocardium in early cardiac ontogeny remains under-explored. Given the shared origin, subsequent juxtaposition, and essential cell-cell interactions of endocardial and myocardial cells throughout heart development, we hypothesized that paracrine signaling from the endocardium to the myocardium is crucial for initiating early differentiation of myocardial cells. To test this, we generated an in vitro, endocardial-specific ablation model using the diphtheria toxin receptor under the regulatory elements of the Nfatc1 genomic locus (NFATc1-DTR). Early treatment of NFATc1-DTR mouse embryoid bodies with diphtheria toxin efficiently ablated endocardial cells, which significantly attenuated the percentage of beating EBs in culture and expression of early and late myocardial differentiation markers. The addition of Bmp2 during endocardial ablation partially rescued myocyte differentiation, maturation and function. Therefore, we conclude that early stages of myocardial differentiation rely on endocardial paracrine signaling mediated in part by Bmp2. Our findings provide novel insight into early endocardial-myocardial interactions that can be explored to promote early myocardial development and growth.


Assuntos
Diferenciação Celular/fisiologia , Endocárdio/citologia , Endocárdio/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Animais , Diferenciação Celular/genética , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Organogênese/genética , Organogênese/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
4.
Nucleic Acids Res ; 48(15): 8349-8359, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32621610

RESUMO

Alternative splicing (AS) and alternative polyadenylation (APA) generate diverse transcripts in mammalian genomes during development and differentiation. Epigenetic marks such as trimethylation of histone H3 lysine 36 (H3K36me3) and DNA methylation play a role in generating transcriptome diversity. Intragenic CpG islands (iCGIs) and their corresponding host genes exhibit dynamic epigenetic and gene expression patterns during development and between different tissues. We hypothesise that iCGI-associated H3K36me3, DNA methylation and transcription can influence host gene AS and/or APA. We investigate H3K36me3 and find that this histone mark is not a major regulator of AS or APA in our model system. Genomewide, we identify over 4000 host genes that harbour an iCGI in the mammalian genome, including both previously annotated and novel iCGI/host gene pairs. The transcriptional activity of these iCGIs is tissue- and developmental stage-specific and, for the first time, we demonstrate that the premature termination of host gene transcripts upstream of iCGIs is closely correlated with the level of iCGI transcription in a DNA-methylation independent manner. These studies suggest that iCGI transcription, rather than H3K36me3 or DNA methylation, interfere with host gene transcription and pre-mRNA processing genomewide and contributes to the spatiotemporal diversification of both the transcriptome and proteome.


Assuntos
Epigênese Genética , Processamento de Proteína Pós-Traducional/genética , Precursores de RNA/genética , Transcrição Gênica , Animais , Diferenciação Celular/genética , Cromatina/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Genoma/genética , Código das Histonas/genética , Humanos , Regiões Promotoras Genéticas , Pseudogenes/genética , Precursores de RNA/metabolismo
5.
Mol Cell ; 48(6): 819-21, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23273741

RESUMO

In this issue of Molecular Cell, Seisenberger et al. (2012) refine DNA methylation mapping to interrogate the epigenetic reprogramming of primordial germ cells, defining the timings of methylation loss, linking to pluripotency, and identifying potential routes to transgenerational epigenetic inheritance.

6.
Mol Cell ; 47(6): 909-20, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22902559

RESUMO

Identifying loci with parental differences in DNA methylation is key to unraveling parent-of-origin phenotypes. By conducting a MeDIP-Seq screen in maternal-methylation free postimplantation mouse embryos (Dnmt3L-/+), we demonstrate that maternal-specific methylation exists very scarcely at midgestation. We reveal two forms of oocyte-specific methylation inheritance: limited to preimplantation, or with longer duration, i.e. maternally imprinted loci. Transient and imprinted maternal germline DMRs (gDMRs) are indistinguishable in gametes and preimplantation embryos, however, de novo methylation of paternal alleles at implantation delineates their fates and acts as a major leveling factor of parent-inherited differences. We characterize two new imprinted gDMRs, at the Cdh15 and AK008011 loci, with tissue-specific imprinting loss, again by paternal methylation gain. Protection against demethylation after fertilization has been emphasized as instrumental in maintaining parent-of-origin methylation inherited from the gametes. Here we provide evidence that protection against de novo methylation acts as an equal major pivot, at implantation and throughout life.


Assuntos
Caderinas/genética , Metilação de DNA , Embrião de Mamíferos/metabolismo , Impressão Genômica , Células Germinativas/metabolismo , Oócitos/metabolismo , Animais , Blastocisto/metabolismo , Embrião de Mamíferos/citologia , Fertilização , Testes Genéticos , Camundongos , Pseudogenes , Análise de Sequência de DNA
8.
EMBO J ; 32(13): 1941-52, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23727884

RESUMO

Germ cells and adult stem cells maintain tissue homeostasis through a finely tuned program of responses to both physiological and stress-related signals. PLZF (Promyelocytic Leukemia Zinc Finger protein), a member of the POK family of transcription factors, acts as an epigenetic regulator of stem cell maintenance in germ cells and haematopoietic stem cells. We identified L1 retrotransposons as the primary targets of PLZF. PLZF-mediated DNA methylation induces silencing of the full-length L1 gene and inhibits L1 retrotransposition. Furthermore, PLZF causes the formation of barrier-type boundaries by acting on inserted truncated L1 sequences in protein coding genes. Cell stress releases PLZF-mediated repression, resulting in L1 activation/retrotransposition and impaired spermatogenesis and myelopoiesis. These results reveal a novel mechanism of action by which, PLZF represses retrotransposons, safeguarding normal progenitor homeostasis.


Assuntos
Epigenômica , Regulação da Expressão Gênica , Células Germinativas/metabolismo , Fatores de Transcrição Kruppel-Like/fisiologia , Elementos Nucleotídeos Longos e Dispersos/genética , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Regiões 5' não Traduzidas/genética , Animais , Diferenciação Celular , Imunoprecipitação da Cromatina , Metilação de DNA , Células Germinativas/citologia , Camundongos , Proteína com Dedos de Zinco da Leucemia Promielocítica , Células-Tronco/citologia , Transcrição Gênica
9.
PLoS Biol ; 12(2): e1001799, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586114

RESUMO

Developmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period. The combined actions of Grb10 expressed in the mother, controlling supply, and Grb10 expressed in the offspring, controlling demand, jointly regulate offspring growth. Furthermore, Grb10 determines the proportions of lean and fat tissue during development, thereby influencing energy homeostasis in the adult. Most strikingly, we show that the development of normal lean/fat proportions depends on the combined effects of Grb10 expressed in the mother, which has the greater effect on offspring adiposity, and Grb10 expressed in the offspring, which influences lean mass. These distinct functions of Grb10 in mother and pup act complementarily, which is consistent with a coadaptation model of imprinting evolution, a model predicted but for which there is limited experimental evidence. In addition, our findings identify Grb10 as a key genetic component of developmental programming, and highlight the need for a better understanding of mother-offspring interactions at the genetic level in predicting adult disease risk.


Assuntos
Tamanho Corporal/genética , Proteína Adaptadora GRB10/genética , Animais , Feminino , Proteína Adaptadora GRB10/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Carioferinas/fisiologia , Lactação/genética , Camundongos , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/fisiologia , Fator de Transcrição STAT5/fisiologia , Proteína Exportina 1
10.
Genome Res ; 23(10): 1624-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23804403

RESUMO

DNA binding factors are essential for regulating gene expression. CTCF and cohesin are DNA binding factors with central roles in chromatin organization and gene expression. We determined the sites of CTCF and cohesin binding to DNA in mouse brain, genome wide and in an allele-specific manner with high read-depth ChIP-seq. By comparing our results with existing data for mouse liver and embryonic stem (ES) cells, we investigated the tissue specificity of CTCF binding sites. ES cells have fewer unique CTCF binding sites occupied than liver and brain, consistent with a ground-state pattern of CTCF binding that is elaborated during differentiation. CTCF binding sites without the canonical consensus motif were highly tissue specific. In brain, a third of CTCF and cohesin binding sites coincide, consistent with the potential for many interactions between cohesin and CTCF but also many instances of independent action. In the context of genomic imprinting, CTCF and/or cohesin bind to a majority but not all differentially methylated regions, with preferential binding to the unmethylated parental allele. Whether the parental allele-specific methylation was established in the parental germlines or post-fertilization in the embryo is not a determinant in CTCF or cohesin binding. These findings link CTCF and cohesin with the control regions of a subset of imprinted genes, supporting the notion that imprinting control is mechanistically diverse.


Assuntos
Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA , DNA/metabolismo , Impressão Genômica , Proteínas Repressoras/metabolismo , Alelos , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Cromossomos de Mamíferos , Biologia Computacional , Regulação da Expressão Gênica , Loci Gênicos , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Especificidade de Órgãos , Ligação Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Coesinas
11.
Proc Biol Sci ; 283(1824)2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26842569

RESUMO

Genomic imprinting is essential for development and growth and plays diverse roles in physiology and behaviour. Imprinted genes have traditionally been studied in isolation or in clusters with respect to cis-acting modes of gene regulation, both from a mechanistic and evolutionary point of view. Recent studies in mammals, however, reveal that imprinted genes are often co-regulated and are part of a gene network involved in the control of cellular proliferation and differentiation. Moreover, a subset of imprinted genes acts in trans on the expression of other imprinted genes. Numerous studies have modulated levels of imprinted gene expression to explore phenotypic and gene regulatory consequences. Increasingly, the applied genome-wide approaches highlight how perturbation of one imprinted gene may affect other maternally or paternally expressed genes. Here, we discuss these novel findings and consider evolutionary theories that offer a rationale for such intricate interactions among imprinted genes. An evolutionary view of these trans-regulatory effects provides a novel interpretation of the logic of gene networks within species and has implications for the origin of reproductive isolation between species.


Assuntos
Evolução Biológica , Redes Reguladoras de Genes , Impressão Genômica , Mamíferos/genética , Animais
12.
PLoS Genet ; 9(1): e1003234, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23358118

RESUMO

What good are transposable elements (TEs)? Although their activity can be harmful to host genomes and can cause disease, they nevertheless represent an important source of genetic variation that has helped shape genomes. In this review, we examine the impact of TEs, collectively referred to as the mobilome, on the transcriptome. We explore how TEs-particularly retrotransposons-contribute to transcript diversity and consider their potential significance as a source of small RNAs that regulate host gene transcription. We also discuss a critical role for the mobilome in engineering transcriptional networks, permitting coordinated gene expression, and facilitating the evolution of novel physiological processes.


Assuntos
Elementos de DNA Transponíveis/genética , RNA Mensageiro/genética , Transcrição Gênica , Transcriptoma/genética , Evolução Molecular , Regulação da Expressão Gênica , Variação Genética , Humanos
13.
Hum Mutat ; 36(12): 1135-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26394720

RESUMO

Genetic heterogeneity presents a significant challenge for the identification of monogenic disease genes. Whole-exome sequencing generates a large number of candidate disease-causing variants and typical analyses rely on deleterious variants being observed in the same gene across several unrelated affected individuals. This is less likely to occur for genetically heterogeneous diseases, making more advanced analysis methods necessary. To address this need, we present HetRank, a flexible gene-ranking method that incorporates interaction network data. We first show that different genes underlying the same monogenic disease are frequently connected in protein interaction networks. This motivates the central premise of HetRank: those genes carrying potentially pathogenic variants and whose network neighbors do so in other affected individuals are strong candidates for follow-up study. By simulating 1,000 exome sequencing studies (20,000 exomes in total), we model varying degrees of genetic heterogeneity and show that HetRank consistently prioritizes more disease-causing genes than existing analysis methods. We also demonstrate a proof-of-principle application of the method to prioritize genes causing Adams-Oliver syndrome, a genetically heterogeneous rare disease. An implementation of HetRank in R is available via the Website http://sourceforge.net/p/hetrank/.


Assuntos
Biologia Computacional/métodos , Exoma , Estudos de Associação Genética/métodos , Heterogeneidade Genética , Sequenciamento de Nucleotídeos em Larga Escala , Software , Simulação por Computador , Epistasia Genética , Redes Reguladoras de Genes , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Humanos , Mapeamento de Interação de Proteínas/métodos , Navegador
14.
Biol Reprod ; 91(5): 125, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25297545

RESUMO

CCCTC-binding factor (CTCF) is the major protein involved in insulator activity in vertebrates, with widespread DNA binding sites in the genome. CTCF participates in many processes related to global chromatin organization and remodeling, contributing to the repression or activation of gene transcription. It is also involved in epigenetic reprogramming and is essential during gametogenesis and embryo development. Abnormal DNA methylation patterns at CTCF motifs may impair CTCF binding to DNA, and are related to fertility disorders in mammals. Therefore, CTCF and its binding sites are important candidate regions to be investigated as molecular markers for gamete and embryo quality. This article reviews the role of CTCF in genomic imprinting, gametogenesis, and early embryo development and, moreover, highlights potential opportunities for environmental influences associated with assisted reproductive techniques (ARTs) to affect CTCF-mediated processes. We discuss the potential use of CTCF as a molecular marker for assessing gamete and embryo quality in the context of improving the efficiency and safety of ARTs.


Assuntos
Impressão Genômica/genética , Crescimento e Desenvolvimento/genética , Proteínas Repressoras/fisiologia , Reprodução/genética , Animais , Fator de Ligação a CCCTC , Metilação de DNA , Desenvolvimento Embrionário/genética , Fertilidade/genética , Gametogênese/genética , Humanos , Proteínas Repressoras/química , Técnicas de Reprodução Assistida
15.
Nucleic Acids Res ; 40(18): 8917-26, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22790983

RESUMO

Alternative polyadenylation increases transcriptome diversity by generating multiple transcript isoforms from a single gene. It is thought that this process can be subject to epigenetic regulation, but few specific examples of this have been reported. We previously showed that the Mcts2/H13 locus is subject to genomic imprinting and that alternative polyadenylation of H13 transcripts occurs in an allele-specific manner, regulated by epigenetic mechanisms. Here, we demonstrate that allele-specific polyadenylation occurs at another imprinted locus with similar features. Nap1l5 is a retrogene expressed from the paternally inherited allele, is situated within an intron of a 'host' gene Herc3, and overlaps a CpG island that is differentially methylated between the parental alleles. In mouse brain, internal Herc3 polyadenylation sites upstream of Nap1l5 are used on the paternally derived chromosome, from which Nap1l5 is expressed, whereas a downstream site is used more frequently on the maternally derived chromosome. Ablating DNA methylation on the maternal allele at the Nap1l5 promoter increases the use of an internal Herc3 polyadenylation site and alters exon splicing. These changes demonstrate the influence of epigenetic mechanisms in regulating Herc3 alternative mRNA processing. Internal Herc3 polyadenylation correlates with expression levels of Nap1l5, suggesting a possible role for transcriptional interference. Similar mechanisms may regulate alternative polyadenylation elsewhere in the genome.


Assuntos
Loci Gênicos , Impressão Genômica , Proteínas do Tecido Nervoso/genética , Poliadenilação , Ubiquitina-Proteína Ligases/genética , Alelos , Animais , Metilação de DNA , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Transcrição Gênica , Ubiquitina-Proteína Ligases/metabolismo
16.
Nucleic Acids Res ; 39(11): 4577-86, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21300645

RESUMO

Imprinted retrotransposed genes share a common genomic organization including a promoter-associated differentially methylated region (DMR) and a position within the intron of a multi-exonic 'host' gene. In the mouse, at least one transcript of the host gene is also subject to genomic imprinting. Human retrogene orthologues are imprinted and we reveal that human host genes are not imprinted. This coincides with genomic rearrangements that occurred during primate evolution, which increase the separation between the retrogene DMRs and the host genes. To address the mechanisms governing imprinted retrogene expression, histone modifications were assayed at the DMRs. For the mouse retrogenes, the active mark H3K4me2 was associated with the unmethylated paternal allele, while the methylated maternal allele was enriched in repressive marks including H3K9me3 and H4K20me3. Two human retrogenes showed monoallelic enrichment of active, but not of repressive marks suggesting a partial uncoupling of the relationship between DNA methylation and repressive histone methylation, possibly due to the smaller size and lower CpG density of these DMRs. Finally, we show that the genes immediately flanking the host genes in mouse and human are biallelically expressed in a range of tissues, suggesting that these loci are distinct from large imprinted clusters.


Assuntos
Impressão Genômica , Histonas/metabolismo , Retroelementos , Alelos , Animais , Cromatina/metabolismo , Metilação de DNA , Humanos , Camundongos , Regiões Promotoras Genéticas
17.
PLoS Genet ; 6(11): e1001214, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21124941

RESUMO

In mammals, imprinted gene expression results from the sex-specific methylation of imprinted control regions (ICRs) in the parental germlines. Imprinting is linked to therian reproduction, that is, the placenta and imprinting emerged at roughly the same time and potentially co-evolved. We assessed the transcriptome-wide and ontology effect of maternally versus paternally methylated ICRs at the developmental stage of setting of the chorioallantoic placenta in the mouse (8.5dpc), using two models of imprinting deficiency including completely imprint-free embryos. Paternal and maternal imprints have a similar quantitative impact on the embryonic transcriptome. However, transcriptional effects of maternal ICRs are qualitatively focused on the fetal-maternal interface, while paternal ICRs weakly affect non-convergent biological processes, with little consequence for viability at 8.5dpc. Moreover, genes regulated by maternal ICRs indirectly influence genes regulated by paternal ICRs, while the reverse is not observed. The functional dominance of maternal imprints over early embryonic development is potentially linked to selection pressures favoring methylation-dependent control of maternal over paternal ICRs. We previously hypothesized that the different methylation histories of ICRs in the maternal versus the paternal germlines may have put paternal ICRs under higher mutational pressure to lose CpGs by deamination. Using comparative genomics of 17 extant mammalian species, we show here that, while ICRs in general have been constrained to maintain more CpGs than non-imprinted sequences, the rate of CpG loss at paternal ICRs has indeed been higher than at maternal ICRs during evolution. In fact, maternal ICRs, which have the characteristics of CpG-rich promoters, have gained CpGs compared to non-imprinted CpG-rich promoters. Thus, the numerical and, during early embryonic development, functional dominance of maternal ICRs can be explained as the consequence of two orthogonal evolutionary forces: pressure to tightly regulate genes affecting the fetal-maternal interface and pressure to avoid the mutagenic environment of the paternal germline.


Assuntos
Evolução Biológica , Desenvolvimento Embrionário/genética , Impressão Genômica/genética , Mamíferos/embriologia , Mamíferos/genética , Animais , Ilhas de CpG/genética , Metilação de DNA/genética , Desaminação/genética , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Humanos , Masculino , Camundongos , Filogenia , Transdução de Sinais/genética
18.
J Clin Endocrinol Metab ; 108(12): 3302-3310, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37285480

RESUMO

CONTEXT: Somatic EPAS1 variants account for 5% to 8% of all pheochromocytoma and paragangliomas (PPGL) but are detected in over 90% of PPGL in patients with congenital cyanotic heart disease, where hypoxemia may select for EPAS1 gain-of-function variants. Sickle cell disease (SCD) is an inherited hemoglobinopathy associated with chronic hypoxia and there are isolated reports of PPGL in patients with SCD, but a genetic link between the conditions has yet to be established. OBJECTIVE: To determine the phenotype and EPAS1 variant status of patients with PPGL and SCD. METHODS: Records of 128 patients with PPGL under follow-up at our center from January 2017 to December 2022 were screened for SCD diagnosis. For identified patients, clinical data and biological specimens were obtained, including tumor, adjacent non-tumor tissue and peripheral blood. Sanger sequencing of exons 9 and 12 of EPAS1, followed by amplicon next-generation sequencing of identified variants was performed on all samples. RESULTS: Four patients with both PPGL and SCD were identified. Median age at PPGL diagnosis was 28 years. Three tumors were abdominal paragangliomas and 1 was a pheochromocytoma. No germline pathogenic variants in PPGL-susceptibility genes were identified in the cohort. Genetic testing of tumor tissue detected unique EPAS1 variants in all 4 patients. Variants were not detected in the germline, and 1 variant was detected in lymph node tissue of a patient with metastatic disease. CONCLUSION: We propose that somatic EPAS1 variants may be acquired through exposure to chronic hypoxia in SCD and drive PPGL development. Future work is needed to further characterize this association.


Assuntos
Neoplasias das Glândulas Suprarrenais , Anemia Falciforme , Paraganglioma , Feocromocitoma , Adulto , Humanos , Neoplasias das Glândulas Suprarrenais/patologia , Anemia Falciforme/complicações , Anemia Falciforme/genética , Mutação em Linhagem Germinativa , Hipóxia , Paraganglioma/patologia , Feocromocitoma/patologia
19.
Clin Epigenetics ; 15(1): 196, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124114

RESUMO

BACKGROUND: Phaeochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours. Pathogenic variants have been identified in more than 15 susceptibility genes; associated tumours are grouped into three Clusters, reinforced by their transcriptional profiles. Cluster 1A PPGLs have pathogenic variants affecting enzymes of the tricarboxylic acid cycle, including succinate dehydrogenase. Within inherited PPGLs, these are the most common. PPGL tumours are known to undergo epigenetic reprograming, and here, we report on global histone post-translational modifications and DNA methylation levels, alongside clinical phenotypes. RESULTS: Out of the 25 histone post-translational modifications examined, Cluster 1A PPGLs were distinguished from other tumours by a decrease in hyper-acetylated peptides and an increase in H3K4me2. DNA methylation was compared between tumours from individuals who developed metastatic disease versus those that did not. The majority of differentially methylated sites identified tended to be completely methylated or unmethylated in non-metastatic tumours, with low inter-sample variance. Metastatic tumours by contrast consistently had an intermediate DNA methylation state, including the ephrin receptor EPHA4 and its ligand EFNA3. Gene expression analyses performed to identify genes involved in metastatic tumour behaviour pin-pointed a number of genes previously described as mis-regulated in Cluster 1A tumours, as well as highlighting the tumour suppressor RGS22 and the pituitary tumour-transforming gene PTTG1. CONCLUSIONS: Combined transcriptomic and DNA methylation analyses revealed aberrant pathways, including ones that could be implicated in metastatic phenotypes and, for the first time, we report a decrease in hyper-acetylated histone marks in Cluster 1 PPGLs.


Assuntos
Neoplasias das Glândulas Suprarrenais , Paraganglioma , Feocromocitoma , Humanos , Feocromocitoma/genética , Feocromocitoma/metabolismo , Feocromocitoma/patologia , Histonas/genética , Histonas/metabolismo , Metilação de DNA , Paraganglioma/genética , Paraganglioma/patologia , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/patologia , Perfilação da Expressão Gênica
20.
Mol Genet Genomics ; 287(8): 621-30, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22821278

RESUMO

In mammals, most somatic cells contain two copies of each autosomal gene, one inherited from each parent. When a gene is expressed, both parental alleles are usually transcribed. However, a subset of genes is subject to the epigenetic silencing of one of the parental copies by genomic imprinting. In this review, we explore the evidence for variability in genomic imprinting between different tissue and cell types. We also consider why the imprinting of particular genes may be restricted to, or lost in, specific tissues and discuss the potential for high-throughput sequencing technologies in facilitating the characterisation of tissue-specific imprinting and assaying the potentially functional variations in epigenetic marks.


Assuntos
Impressão Genômica , Mamíferos/genética , Alelos , Animais , Proteína Adaptadora GRB10/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Especificidade de Órgãos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA