Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(6): 1206-1221, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38772379

RESUMO

Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.


Assuntos
Transtornos do Neurodesenvolvimento , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Epilepsia/genética , Sequenciamento do Exoma , Doenças Genéticas Ligadas ao Cromossomo X/genética , Heterozigoto , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem , Fenótipo , Canais de Potássio Shal/genética
2.
Am J Hum Genet ; 108(1): 186-193, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417887

RESUMO

POLR3B encodes the second-largest catalytic subunit of RNA polymerase III, an enzyme involved in transcription. Bi-allelic pathogenic variants in POLR3B are a well-established cause of hypomyelinating leukodystrophy. We describe six unrelated individuals with de novo missense variants in POLR3B and a clinical presentation substantially different from POLR3-related leukodystrophy. These individuals had afferent ataxia, spasticity, variable intellectual disability and epilepsy, and predominantly demyelinating sensory motor peripheral neuropathy. Protein modeling and proteomic analysis revealed a distinct mechanism of pathogenicity; the de novo POLR3B variants caused aberrant association of individual enzyme subunits rather than affecting overall enzyme assembly or stability. We expand the spectrum of disorders associated with pathogenic variants in POLR3B to include a de novo heterozygous POLR3B-related disorder.


Assuntos
Ataxia/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , RNA Polimerase III/genética , Adolescente , Adulto , Ataxia Cerebelar/genética , Criança , Pré-Escolar , Feminino , Genes Recessivos/genética , Heterozigoto , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Proteômica/métodos , Adulto Jovem
3.
Genet Med ; 25(8): 100871, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37120726

RESUMO

PURPOSE: HNRNPU haploinsufficiency is associated with developmental and epileptic encephalopathy 54. This neurodevelopmental disorder is characterized by developmental delay, intellectual disability, speech impairment, and early-onset epilepsy. We performed genome-wide DNA methylation (DNAm) analysis in a cohort of individuals to develop a diagnostic biomarker and gain functional insights into the molecular pathophysiology of HNRNPU-related disorder. METHODS: DNAm profiles of individuals carrying pathogenic HNRNPU variants, identified through an international multicenter collaboration, were assessed using Infinium Methylation EPIC arrays. Statistical and functional correlation analyses were performed comparing the HNRNPU cohort with 56 previously reported DNAm episignatures. RESULTS: A robust and reproducible DNAm episignature and global DNAm profile were identified. Correlation analysis identified partial overlap and similarity of the global HNRNPU DNAm profile to several other rare disorders. CONCLUSION: This study demonstrates new evidence of a specific and sensitive DNAm episignature associated with pathogenic heterozygous HNRNPU variants, establishing its utility as a clinical biomarker for the expansion of the EpiSign diagnostic test.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA/genética , Epigenômica , Fenótipo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Biomarcadores
4.
Brain ; 145(1): 208-223, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34382076

RESUMO

Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy and movement disorder. We evaluated a large cohort of patients (n = 25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor and ataxia. Later in the disease course, they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibres and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.


Assuntos
Alquil e Aril Transferases , Mioclonia , Doenças Neurodegenerativas , Retinose Pigmentar , Criança , Dolicóis/metabolismo , Humanos , Doenças Neurodegenerativas/genética , Retinose Pigmentar/genética
5.
Hum Mutat ; 43(11): 1609-1628, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35904121

RESUMO

An expanding range of genetic syndromes are characterized by genome-wide disruptions in DNA methylation profiles referred to as episignatures. Episignatures are distinct, highly sensitive, and specific biomarkers that have recently been applied in clinical diagnosis of genetic syndromes. Episignatures are contained within the broader disorder-specific genome-wide DNA methylation changes, which can share significant overlap among different conditions. In this study, we performed functional genomic assessment and comparison of disorder-specific and overlapping genome-wide DNA methylation changes related to 65 genetic syndromes with previously described episignatures. We demonstrate evidence of disorder-specific and recurring genome-wide differentially methylated probes (DMPs) and regions (DMRs). The overall distribution of DMPs and DMRs across the majority of the neurodevelopmental genetic syndromes analyzed showed substantial enrichment in gene promoters and CpG islands, and under-representation of the more variable intergenic regions. Analysis showed significant enrichment of the DMPs and DMRs in gene pathways and processes related to neurodevelopment, including neurogenesis, synaptic signaling and synaptic transmission. This study expands beyond the diagnostic utility of DNA methylation episignatures by demonstrating correlation between the function of the mutated genes and the consequent genomic DNA methylation profiles as a key functional element in the molecular etiology of genetic neurodevelopmental disorders.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento , Ilhas de CpG/genética , Metilação de DNA/genética , DNA Intergênico , Epigênese Genética , Humanos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Síndrome
6.
Am J Hum Genet ; 105(6): 1126-1147, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31735293

RESUMO

The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders. TMX2 encodes one of the five TMX proteins of the protein disulfide isomerase family, hitherto not linked to human developmental brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER mitochondria-associated membranes (MAMs), is involved in posttranslational modification and protein folding, and undergoes physical interaction with the MAM-associated and ER folding chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen peroxide, recently recognized as a signaling molecule in neural morphogenesis and axonal pathfinding. Exogenous expression of the pathogenic TMX2 variants or of variants with an in vitro mutagenized TRX domain induces a constitutive TMX2 polymerization, mimicking an increased oxidative state. Altogether these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it as a key adaptive regulator of neuronal proliferation, migration, and organization in the developing brain.


Assuntos
Encefalopatias/patologia , Encéfalo/anormalidades , Deficiências do Desenvolvimento/patologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Tiorredoxinas/metabolismo , Adolescente , Adulto , Encefalopatias/genética , Encefalopatias/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana/genética , Mitocôndrias/patologia , Oxirredução , Prognóstico , Pele/metabolismo , Pele/patologia , Tiorredoxinas/genética , Transcriptoma
7.
Clin Genet ; 99(2): 259-268, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33131045

RESUMO

The CAMTA1-associated phenotype was initially defined in patients with intragenic deletions and duplications who showed nonprogressive congenital ataxia, with or without intellectual disability. Here, we describe 10 individuals with CAMTA1 variants: nine previously unreported (likely) pathogenic variants comprising one missense, four frameshift and four nonsense variants, and one missense variant of unknown significance. Six patients were diagnosed following whole exome sequencing and four individuals with exome-based targeted panel analysis. Most of them present with developmental delay, manifesting in speech and motor delay. Other frequent findings are hypotonia, cognitive impairment, cerebellar dysfunction, oculomotor abnormalities, and behavioral problems. Feeding problems occur more frequently than previously observed. In addition, we present a systematic review of 19 previously published individuals with causal variants, including copy number, truncating, and missense variants. We note a tendency of more severe cognitive impairment and recurrent dysmorphic features in individuals with a copy number variant. Pathogenic variants are predominantly observed in and near the N- and C- terminal functional domains. Clinical heterogeneity is observed, but 3'-terminal variants seem to associate with less pronounced cerebellar dysfunction.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Doenças do Sistema Nervoso/genética , Transativadores/genética , Adolescente , Criança , Pré-Escolar , Transtornos Cognitivos/genética , Análise Mutacional de DNA , Deficiências do Desenvolvimento/genética , Feminino , Humanos , Masculino , Fenótipo
8.
Am J Med Genet A ; 185(9): 2690-2718, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33205886

RESUMO

Twins have an increased risk for congenital malformations and disruptions, including defects in brain morphogenesis. We analyzed data on brain imaging, zygosity, sex, and fetal demise in 56 proband twins and 7 less affected co-twins with abnormal brain imaging and compared them to population-based data and to a literature series. We separated our series into malformations of cortical development (MCD, N = 39), cerebellar malformations without MCD (N = 13), and brain disruptions (N = 11). The MCD group included 37/39 (95%) with polymicrogyria (PMG), 8/39 (21%) with pia-ependymal clefts (schizencephaly), and 15/39 (38%) with periventricular nodular heterotopia (PNH) including 2 with PNH but not PMG. Cerebellar malformations were found in 19 individuals including 13 with a cerebellar malformation only and another 6 with cerebellar malformation and MCD. The pattern varied from diffuse cerebellar hypoplasia to classic Dandy-Walker malformation. Brain disruptions were seen in 11 individuals with hydranencephaly, porencephaly, or white matter loss without cysts. Our series included an expected statistically significant excess of monozygotic (MZ) twin pairs (22/41 MZ, 54%) compared to population data (482/1448 MZ, 33.3%; p = .0110), and an unexpected statistically significant excess of dizygotic (DZ) twins (19/41, 46%) compared to the literature cohort (1/46 DZ, 2%; p < .0001. Recurrent association with twin-twin transfusion syndrome, intrauterine growth retardation, and other prenatal factors support disruption of vascular perfusion as the most likely unifying cause.


Assuntos
Encéfalo/anormalidades , Encéfalo/patologia , Doenças em Gêmeos/patologia , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Adulto , Doenças em Gêmeos/genética , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Literatura de Revisão como Assunto
9.
Nucleic Acids Res ; 47(D1): D1018-D1027, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30476213

RESUMO

The Human Phenotype Ontology (HPO)-a standardized vocabulary of phenotypic abnormalities associated with 7000+ diseases-is used by thousands of researchers, clinicians, informaticians and electronic health record systems around the world. Its detailed descriptions of clinical abnormalities and computable disease definitions have made HPO the de facto standard for deep phenotyping in the field of rare disease. The HPO's interoperability with other ontologies has enabled it to be used to improve diagnostic accuracy by incorporating model organism data. It also plays a key role in the popular Exomiser tool, which identifies potential disease-causing variants from whole-exome or whole-genome sequencing data. Since the HPO was first introduced in 2008, its users have become both more numerous and more diverse. To meet these emerging needs, the project has added new content, language translations, mappings and computational tooling, as well as integrations with external community data. The HPO continues to collaborate with clinical adopters to improve specific areas of the ontology and extend standardized disease descriptions. The newly redesigned HPO website (www.human-phenotype-ontology.org) simplifies browsing terms and exploring clinical features, diseases, and human genes.


Assuntos
Ontologias Biológicas , Biologia Computacional/métodos , Anormalidades Congênitas/genética , Predisposição Genética para Doença/genética , Bases de Conhecimento , Doenças Raras/genética , Anormalidades Congênitas/diagnóstico , Bases de Dados Genéticas , Variação Genética , Humanos , Internet , Fenótipo , Doenças Raras/diagnóstico , Sequenciamento Completo do Genoma/métodos
11.
Brain ; 142(4): 867-884, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30879067

RESUMO

Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Adulto , Encéfalo/patologia , Proteínas de Transporte/genética , Ciclo Celular/fisiologia , Cílios/metabolismo , Feminino , Estudos de Associação Genética/métodos , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Recém-Nascido , Masculino , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/metabolismo , Microcefalia/genética , Mutação , Malformações do Sistema Nervoso/genética , Polimicrogiria/etiologia , Polimicrogiria/patologia
13.
PLoS Genet ; 13(5): e1006809, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542170

RESUMO

Integrator is an RNA polymerase II (RNAPII)-associated complex that was recently identified to have a broad role in both RNA processing and transcription regulation. Importantly, its role in human development and disease is so far largely unexplored. Here, we provide evidence that biallelic Integrator Complex Subunit 1 (INTS1) and Subunit 8 (INTS8) gene mutations are associated with rare recessive human neurodevelopmental syndromes. Three unrelated individuals of Dutch ancestry showed the same homozygous truncating INTS1 mutation. Three siblings harboured compound heterozygous INTS8 mutations. Shared features by these six individuals are severe neurodevelopmental delay and a distinctive appearance. The INTS8 family in addition presented with neuronal migration defects (periventricular nodular heterotopia). We show that the first INTS8 mutation, a nine base-pair deletion, leads to a protein that disrupts INT complex stability, while the second missense mutation introduces an alternative splice site leading to an unstable messenger. Cells from patients with INTS8 mutations show increased levels of unprocessed UsnRNA, compatible with the INT function in the 3'-end maturation of UsnRNA, and display significant disruptions in gene expression and RNA processing. Finally, the introduction of the INTS8 deletion mutation in P19 cells using genome editing alters gene expression throughout the course of retinoic acid-induced neural differentiation. Altogether, our results confirm the essential role of Integrator to transcriptome integrity and point to the requirement of the Integrator complex in human brain development.


Assuntos
Deficiências do Desenvolvimento/genética , Deleção de Genes , Mutação de Sentido Incorreto , Subunidades Proteicas/genética , RNA Mensageiro/metabolismo , Adulto , Processamento Alternativo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Criança , Deficiências do Desenvolvimento/diagnóstico , Feminino , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Heterozigoto , Humanos , Masculino , Mutação , Linhagem , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , Síndrome , Transcriptoma , Proteína Wnt1
14.
Am J Med Genet C Semin Med Genet ; 181(4): 627-637, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31710781

RESUMO

EML1 encodes the protein Echinoderm microtubule-associated protein-like 1 or EMAP-1 that binds to the microtubule complex. Mutations in this gene resulting in complex brain malformations have only recently been published with limited clinical descriptions. We provide further clinical and imaging details on three previously published families, and describe two novel unrelated individuals with a homozygous partial EML1 deletion and a homozygous missense variant c.760G>A, p.(Val254Met), respectively. From review of the clinical and imaging data of eight individuals from five families with biallelic EML1 variants, a very consistent imaging phenotype emerges. The clinical syndrome is characterized by mainly neurological features including severe developmental delay, drug-resistant seizures and visual impairment. On brain imaging there is megalencephaly with a characteristic ribbon-like subcortical heterotopia combined with partial or complete callosal agenesis and an overlying polymicrogyria-like cortical malformation. Several of its features can be recognized on prenatal imaging especially the abnormaly formed lateral ventricles, hydrocephalus (in half of the cases) and suspicion of a neuronal migration disorder. In conclusion, biallelic EML1 disease-causing variants cause a highly specific pattern of congenital brain malformations, severe developmental delay, seizures and visual impairment.


Assuntos
Encéfalo/patologia , Proteínas Associadas aos Microtúbulos/genética , Humanos , Malformações do Desenvolvimento Cortical do Grupo II/genética , Mutação de Sentido Incorreto , Deleção de Sequência
15.
Genet Med ; 21(2): 398-408, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30093711

RESUMO

PURPOSE: To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway METHODS: We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants. RESULTS: The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia (20%). Infantile spasms were reported in 10% of the probands. Sudden unexpected death in epilepsy (SUDEP) occurred in 10% of the families. Novel classification framework of all 140 epilepsy-related GATOR1 variants (including the variants of this study) revealed that 68% are loss-of-function pathogenic, 14% are likely pathogenic, 15% are variants of uncertain significance and 3% are likely benign. CONCLUSION: Our data emphasize the increasingly important role of GATOR1 genes in the pathogenesis of focal epilepsies (>180 probands to date). The GATOR1 phenotypic spectrum ranges from sporadic early-onset epilepsies with cognitive impairment comorbidities to familial focal epilepsies, and SUDEP.


Assuntos
Epilepsia/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Síndrome de Brugada/genética , Síndrome de Brugada/mortalidade , Síndrome de Brugada/fisiopatologia , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Epilepsia/complicações , Epilepsia/epidemiologia , Epilepsia/fisiopatologia , Feminino , Predisposição Genética para Doença , Humanos , Mutação INDEL/genética , Lactente , Recém-Nascido , Mutação com Perda de Função/genética , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Complexos Multiproteicos/genética , Linhagem , Convulsões/complicações , Convulsões/epidemiologia , Convulsões/genética , Convulsões/fisiopatologia , Transdução de Sinais/genética
19.
Brain ; 141(11): 3160-3178, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351409

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control neuronal excitability and their dysfunction has been linked to epileptogenesis but few individuals with neurological disorders related to variants altering HCN channels have been reported so far. In 2014, we described five individuals with epileptic encephalopathy due to de novo HCN1 variants. To delineate HCN1-related disorders and investigate genotype-phenotype correlations further, we assembled a cohort of 33 unpublished patients with novel pathogenic or likely pathogenic variants: 19 probands carrying 14 different de novo mutations and four families with dominantly inherited variants segregating with epilepsy in 14 individuals, but not penetrant in six additional individuals. Sporadic patients had epilepsy with median onset at age 7 months and in 36% the first seizure occurred during a febrile illness. Overall, considering familial and sporadic patients, the predominant phenotypes were mild, including genetic generalized epilepsies and genetic epilepsy with febrile seizures plus (GEFS+) spectrum. About 20% manifested neonatal/infantile onset otherwise unclassified epileptic encephalopathy. The study also included eight patients with variants of unknown significance: one adopted patient had two HCN1 variants, four probands had intellectual disability without seizures, and three individuals had missense variants inherited from an asymptomatic parent. Of the 18 novel pathogenic missense variants identified, 12 were associated with severe phenotypes and clustered within or close to transmembrane domains, while variants segregating with milder phenotypes were located outside transmembrane domains, in the intracellular N- and C-terminal parts of the channel. Five recurrent variants were associated with similar phenotypes. Using whole-cell patch-clamp, we showed that the impact of 12 selected variants ranged from complete loss-of-function to significant shifts in activation kinetics and/or voltage dependence. Functional analysis of three different substitutions altering Gly391 revealed that these variants had different consequences on channel biophysical properties. The Gly391Asp variant, associated with the most severe, neonatal phenotype, also had the most severe impact on channel function. Molecular dynamics simulation on channel structure showed that homotetramers were not conducting ions because the permeation path was blocked by cation(s) strongly complexed to the Asp residue, whereas heterotetramers showed an instantaneous current component possibly linked to deformation of the channel pore. In conclusion, our results considerably expand the clinical spectrum related to HCN1 variants to include common generalized epilepsy phenotypes and further illustrate how HCN1 has a pivotal function in brain development and control of neuronal excitability.


Assuntos
Epilepsia Generalizada/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Mutação/genética , Canais de Potássio/genética , Espasmos Infantis/genética , Adolescente , Adulto , Idoso , Animais , Células CHO , Criança , Pré-Escolar , Cricetulus , Estimulação Elétrica , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Potenciais da Membrana/genética , Pessoa de Meia-Idade , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Adulto Jovem
20.
Brain ; 140(11): 2879-2894, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053855

RESUMO

Genetic epilepsies are caused by mutations in a range of different genes, many of them encoding ion channels, receptors or transporters. While the number of detected variants and genes increased dramatically in the recent years, pleiotropic effects have also been recognized, revealing that clinical syndromes with various degrees of severity arise from a single gene, a single mutation, or from different mutations showing similar functional defects. Accordingly, several genes coding for GABAA receptor subunits have been linked to a spectrum of benign to severe epileptic disorders and it was shown that a loss of function presents the major correlated pathomechanism. Here, we identified six variants in GABRA3 encoding the α3-subunit of the GABAA receptor. This gene is located on chromosome Xq28 and has not been previously associated with human disease. Five missense variants and one microduplication were detected in four families and two sporadic cases presenting with a range of epileptic seizure types, a varying degree of intellectual disability and developmental delay, sometimes with dysmorphic features or nystagmus. The variants co-segregated mostly but not completely with the phenotype in the families, indicating in some cases incomplete penetrance, involvement of other genes, or presence of phenocopies. Overall, males were more severely affected and there were three asymptomatic female mutation carriers compared to only one male without a clinical phenotype. X-chromosome inactivation studies could not explain the phenotypic variability in females. Three detected missense variants are localized in the extracellular GABA-binding NH2-terminus, one in the M2-M3 linker and one in the M4 transmembrane segment of the α3-subunit. Functional studies in Xenopus laevis oocytes revealed a variable but significant reduction of GABA-evoked anion currents for all mutants compared to wild-type receptors. The degree of current reduction correlated partially with the phenotype. The microduplication disrupted GABRA3 expression in fibroblasts of the affected patient. In summary, our results reveal that rare loss-of-function variants in GABRA3 increase the risk for a varying combination of epilepsy, intellectual disability/developmental delay and dysmorphic features, presenting in some pedigrees with an X-linked inheritance pattern.


Assuntos
Encefalopatias/genética , Fissura Palatina/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Fácies , Deficiência Intelectual/genética , Nistagmo Patológico/genética , Receptores de GABA-A/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Variação Genética , Humanos , Masculino , Microcefalia/genética , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Técnicas de Patch-Clamp , Linhagem , Receptores de GABA-A/metabolismo , Síndrome , Xenopus laevis , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA