Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629159

RESUMO

Long-term treatments for inflammatory skin diseases like atopic dermatitis or eczema can cause adverse effects. Super Protein Multifunction (SPM) was investigated as a potential treatment for managing skin inflammation by monitoring the expression of pro-inflammatory cytokines induced using LPS and poly(I:C)/TNFα in HaCaT keratinocytes and Hs27 fibroblasts as measured via RT-PCR. SPM solution was also assessed for its effect on cytokine release, measured using ELISA, in a UVB-irradiated 3D human skin model. To evaluate the efficiency of SPM, 20 patients with mild eczematous skin were randomized to receive SPM or vehicle twice a day for three weeks in a double-blind controlled trial. In vitro studies showed SPM inhibited inflammation-induced IL-1ß, IL-6, IL-33, IL-1α, TSLP, and TNFα expression or release. In the clinical study, the SPM group showed significant improvements in the IGA, PA, and DLQI scores compared to the vehicle group. Neither group showed significant differences in VAS (pruritus). Histological analysis showed reduced stratum corneum thickness and inflammatory cell infiltration. The results suggest that SPM may reduce inflammation in individuals with chronic eczematous skin.


Assuntos
Eczema , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/genética , Pele , Inflamação , Prurido , Citocinas , Excipientes
2.
Biosci Biotechnol Biochem ; 84(2): 256-267, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31601153

RESUMO

Signaling between cancer cells, their neighboring cells, and mesenchymal stem cells (MSCs) forms the tumor microenvironment. The complex heterogeneity of this microenvironment varies depending on the tumor type and its origins. However, most of the existing cancer-based studies have focused on cancer cells. In this study, we used a direct co-culture system (cross-talk signaling) to induce cross-interaction between cancer cells and mesenchymal stem cells. This induced deformation of MSCs. MSCs showed a diminished ability to maintain homeostasis. In particular, increase in the invasion ability of MSCs by TGF-ß1 and decrease in p53, which plays a key role in cancer development, is an important discovery. It can thus be deduced that blocking these changes can effectively inhibit metastatic colorectal cancer. In conclusion, understanding the interactions and changes in MSCs associated with cancer will help develop novel therapeutic strategies for cancer.


Assuntos
Proliferação de Células , Neoplasias Colorretais/patologia , Células-Tronco Mesenquimais/citologia , Invasividade Neoplásica , Fator de Crescimento Transformador beta1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Perfilação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA