RESUMO
BACKGROUND: Malaria and schistosomiasis present considerable disease burden in tropical and sub-tropical areas and severity is worsened by co-infections in areas where both diseases are endemic. Although pathogenesis of these infections separately is well studied, there is limited information on the pathogenic disease mechanisms and clinical disease outcomes in co-infections. In this study, we investigated the prevalence of malaria and schistosomiasis co-infections, and the hematologic and blood chemistry abnormalities in asymptomatic adults in a rural fishing community in western Kenya. METHODS: This sub-study used samples and data collected at enrollment from a prospective observational cohort study (RV393) conducted in Kisumu County, Kenya. The presence of malaria parasites was determined using microscopy and real-time-PCR, and schistosomiasis infection by urine antigen analysis (CCA). Hematological analysis and blood chemistries were performed using standard methods. Statistical analyses were performed to compare demographic and infection data distribution, and hematologic and blood chemistry parameters based on different groups of infection categories. Clinically relevant hematologic conditions were analyzed using general linear and multivariable Poisson regression models. RESULTS: From February 2017 to May 2018, we enrolled 671 participants. The prevalence of asymptomatic Plasmodium falciparum was 28.2% (157/556) and schistosomiasis 41.2% (229/562), with 18.0% (100/556) of participants co-infected. When we analyzed hematological parameters using Wilcoxon rank sum test to evaluate median (IQR) distribution based on malarial parasites and/or schistosomiasis infection status, there were significant differences in platelet counts (p = 0.0002), percent neutrophils, monocytes, eosinophils, and basophils (p < 0.0001 each). Amongst clinically relevant hematological abnormalities, eosinophilia was the most prevalent at 20.6% (116/562), whereas thrombocytopenia was the least prevalent at 4.3% (24/562). In univariate model, Chi-Square test performed for independence between participant distribution in different malaria parasitemia/schistosomiasis infection categories within each clinical hematological condition revealed significant differences for thrombocytopenia and eosinophilia (p = 0.006 and p < 0.0001, respectively), which was confirmed in multivariable models. Analysis of the pairwise mean differences of liver enzyme (ALT) and kidney function (Creatinine Clearance) indicated the presence of significant differences in ALT across the infection groups (parasite + /CCA + vs all other groups p < .003), but no differences in mean Creatinine Clearance across the infection groups. CONCLUSIONS: Our study demonstrates the high burden of asymptomatic malaria parasitemia and schistosomiasis infection in this rural population in Western Kenya. Asymptomatic infection with malaria or schistosomiasis was associated with laboratory abnormalities including neutropenia, leukopenia and thrombocytopenia. These abnormalities could be erroneously attributed to other diseases processes during evaluation of diseases processes. Therefore, evaluating for co-infections is key when assessing individuals with laboratory abnormalities. Additionally, asymptomatic infection needs to be considered in control and elimination programs given high prevalence documented here.
Assuntos
Coinfecção , Malária Falciparum , Malária , Esquistossomose , Adulto , Infecções Assintomáticas/epidemiologia , Coinfecção/epidemiologia , Estudos Transversais , Humanos , Quênia/epidemiologia , Malária/complicações , Malária/epidemiologia , Malária Falciparum/complicações , Malária Falciparum/epidemiologia , Plasmodium falciparum , Prevalência , Estudos Prospectivos , População Rural , Esquistossomose/complicações , Esquistossomose/epidemiologiaRESUMO
Single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum multi-drug resistance protein 1 (Pfmrp1) gene have previously been reported to confer resistance to Artemisinin-based Combination Therapies (ACTs) in Southeast Asia. A total of 300 samples collected from six sites between 2008 and 2019 under an ongoing malaria drug sensitivity patterns in Kenya study were evaluated for the presence of SNPs at Pfmrp1 gene codons: H191Y, S437A, I876V, and F1390I using the Agena MassARRAY® platform. Each isolate was further tested against artemisinin (ART), lumefantrine (LU), amodiaquine (AQ), mefloquine (MQ), quinine (QN), and chloroquine (CQ) using malaria the SYBR Green I-based method to determine their in vitro drug sensitivity. Of the samples genotyped, polymorphism at Pfmrp1 codon I876V was the most frequent, with 59.3% (163/275) mutants, followed by F1390I, 7.2% (20/278), H191Y, 4.0% (6/151), and S437A, 3.3% (9/274). A significant decrease in median 50% inhibition concentrations (IC50s) and interquartile range (IQR) was noted; AQ from 2.996 ng/ml [IQR = 2.604-4.747, n = 51] in 2008 to 1.495 ng/ml [IQR = 0.7134-3.318, n = 40] (P<0.001) in 2019, QN from 59.64 ng/ml [IQR = 29.88-80.89, n = 51] in 2008 to 18.10 ng/ml [IQR = 11.81-26.92, n = 42] (P<0.001) in 2019, CQ from 35.19 ng/ml [IQR = 16.99-71.20, n = 30] in 2008 to 6.699 ng/ml [IQR = 4.976-9.875, n = 37] (P<0.001) in 2019, and ART from 2.680 ng/ml [IQR = 1.608-4.857, n = 57] in 2008 to 2.105 ng/ml [IQR = 1.266-3.267, n = 47] (P = 0.0012) in 2019, implying increasing parasite sensitivity to the drugs over time. However, no significant variations were observed in LU (P = 0.2692) and MQ (P = 0.0939) respectively, suggesting stable parasite responses over time. There was no statistical significance between the mutation at 876 and parasite sensitivity to selected antimalarials tested, suggesting stable sensitivity for the parasites with 876V mutations. These findings show that Kenyan parasite strains are still sensitive to AQ, QN, CQ, ART, LU, and MQ. Despite the presence of Pfmrp1 mutations in parasites among the population.
Assuntos
Antimaláricos , Combinação Arteméter e Lumefantrina , Malária Falciparum , Plasmodium falciparum , Polimorfismo de Nucleotídeo Único , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Humanos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Quênia , Mefloquina/farmacologia , Mefloquina/uso terapêutico , Amodiaquina/farmacologia , Amodiaquina/uso terapêutico , Resistência a Medicamentos/genética , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Quinina/farmacologia , Quinina/uso terapêutico , Masculino , FemininoRESUMO
OBJECTIVES: HIV and malaria coinfection impacts disease management and clinical outcomes. This study investigated hematologic abnormalities in malaria-asymptomatic people living with HIV (PLHIV) in regions with differing malaria transmission. METHODS: Study participants were enrolled in the African Cohort Study: two sites in Kenya, one in Uganda, and one in Nigeria. Data was collected at enrollment and every 6 months. Logistic regression estimated odds ratios for associations between HIV/malaria status and anemia, thrombocytopenia, and leucopenia. RESULTS: Samples from 1587 participants with one or more visits comprising 1471 (92.7%) from PLHIV and 116 (7.3%) without HIV were analyzed. Parasite point prevalence significantly differed across the study sites (P <0.001). PLHIV had higher odds of anemia, with males at lower odds compared to females; the odds of anemia decreased with age, reaching significance in those ≥50 years old. Participants in Kisumu, Kenya had higher odds of anemia compared to other sites. PLHIV had higher odds of leucopenia, but malaria co-infection was not associated with worsened leucopenia. The odds of thrombocytopenia were decreased in HIV/malaria co-infection compared to the uninfected group. CONCLUSION: Hematological parameters are important indicators of health and disease. In PLHIV with asymptomatic malaria co-infection enrolled across four geographic sites in three African countries, abnormalities in hematologic parameters differ in different malaria transmission settings and are region-specific.
Assuntos
Anemia , Coinfecção , Infecções por HIV , Malária , Trombocitopenia , Masculino , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Estudos de Coortes , Coinfecção/epidemiologia , Coinfecção/complicações , Malária/complicações , Malária/epidemiologia , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Anemia/epidemiologia , Infecções Assintomáticas/epidemiologia , Quênia/epidemiologia , PrevalênciaRESUMO
OBJECTIVES: This study examined the treatment response of mixed vs single-species Plasmodium falciparum infections to artemisinin-based combination therapies (ACTs). METHODS: A total of 1211 blood samples collected on days 0, 7, 14, 21, 28, 35, and 42 from 173 individuals enrolled in two randomized ACT efficacy studies were tested for malaria using 18s ribosomal RNA-based real-time polymerase chain reaction. All recurrent parasitemia were characterized for Plasmodium species composition and time to reinfection during 42-day follow-up compared across ACTs. RESULTS: Day 0 samples had 71.1% (116/163) single P. falciparum infections and 28.2% (46/163) coinfections. A total of 54.0% (88/163) of individuals tested positive for Plasmodium at least once between days 7-42. A total of 19.3% (17/88) of individuals with recurrent infections were infected with a different Plasmodium species than observed at day 0, with 76.5% (13/17) of these "hidden" infections appearing after clearing P. falciparum present at day 0. Artesunate-mefloquine (16.4 hours) and dihydroartemisinin-piperaquine (17.6 hours) had increased clearance rates over artemether-lumefantrine (21.0 hours). Dihydroartemisinin-piperaquine exhibited the longest duration of reinfection prophylaxis. Cure rates were comparable across each species composition. CONCLUSION: No differences in clearance rates were found depending on whether the infection contained species other than P. falciparum. Significantly longer durations of protection were observed for individuals treated with dihydroartemisinin-piperaquine.
Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Quinolinas , Humanos , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Combinação de Medicamentos , Quênia , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Plasmodium falciparum , Quinolinas/uso terapêutico , Reinfecção , Estudos RetrospectivosRESUMO
BACKGROUND: The epidemiology and severity of non-falciparum malaria in endemic settings has garnered little attention. We aimed to characterise the prevalence, interaction, clinical risk factors, and temporal trends of non-falciparum Plasmodium species among symptomatic individuals presenting at health-care facilities in endemic settings of Kenya. METHODS: We diagnosed and analysed infecting malaria species (Plasmodium falciparum, Plasmodium ovale curtisi, Plasmodium ovale wallikeri, and Plasmodium malariae) via PCR in clinical samples collected between March 1, 2008, and Dec 31, 2016, from six hospitals located in different regions of Kenya. We recruited patients aged 6 months or older who presented at outpatient departments with symptoms of malaria or tested positive for uncomplicated malaria by malaria rapid diagnostic test. Descriptive statistics were used to describe the prevalence and distribution of Plasmodium species. A statistical model was designed and used for estimating the frequency of Plasmodium species and assessing interspecies interactions. Mixed-effect linear regression models with random slopes for each location were used to test for change in prevalence over time. FINDINGS: Samples from 2027 symptomatic participants presenting at care facilities were successfully analysed for all Plasmodium species. 1469 (72·5%) of the samples were P falciparum single-species infections, 523 (25·8%) were mixed infections, and only 35 (1·7%) were single non-falciparum species infections. 452 (22·3%) were mixed infections containing P ovale spp. A likelihood-based model calculation of the population frequency of each species estimated a significant within-host interference between P falciparum and P ovale curtisi. Mixed-effect logistic regression models identified a significant increase in P ovale wallikeri (2·1% per year; p=0·043) and P ovale curtisi (0·7% per year; p=0·0002) species over time, with a reciprocal decrease in P falciparum single-species infections (2·5% per year; p=0·0065). The frequency of P malariae infections did not significantly change over time. Risk of P falciparum infections presenting with fever was lower if co-infected with P malariae (adjusted odds ratio 0·43, 95% CI 0·25-0·74; p=0·0023). INTERPRETATION: Our results show a prevalence of non-falciparum species infections of 27·5% among symptomatic individuals presenting at care facilities, which is higher than expected from previous cross-sectional surveys. The proportion of infections with P ovale wallikeri and P ovale curtisi was observed to significantly increase over the period of study, which could be due to attenuated responsiveness of these species to malaria drug treatment. The increase in frequency of P ovale spp could threaten the malaria control efforts in Kenya and pose increased risk of malaria to travellers. FUNDING: Armed Forces Health Surveillance Branch and its Global Emerging Infections Surveillance Section.
Assuntos
Coinfecção , Malária Falciparum , Malária , Plasmodium ovale , Estudos Transversais , Humanos , Funções Verossimilhança , Malária/diagnóstico , Malária Falciparum/epidemiologia , Plasmodium falciparum , Plasmodium malariae , PrevalênciaRESUMO
Background: The emergence of artemisinin resistance in South East Asia calls for urgent discovery of new drug compounds that have antiplasmodial activity. Unlike the classical compound screening drug discovery methods, the rational approach involving targeted drug discovery is less cumbersome and therefore key for innovation of new antiplasmodial compounds. Plasmodium falciparum (Pf) utilizes the process of host erythrocyte remodeling using Plasmodium-helical interspersed sub-telomeric domain (PHIST) containing proteins, which are amenable drug targets. The aim of this study is to identify inhibitors of PHIST from sulfated polysaccharides as new antimalarials. Methods: 251 samples from an ongoing study of epidemiology of malaria and drug resistance sensitivity patterns in Kenya were sequenced for PHISTb/RLP1 gene using Sanger sequencing. The sequenced reads were mapped to the reference Pf3D7 protein sequence of PHISTb/RLP1 using CLC Main Workbench. Homology modeling of both reference and mutant protein structures was achieved using the LOMETs tool. The models were refined using ModRefiner for energy minimization. Ramachandran plot was generated by ProCheck to assess the conformation of amino acids in the protein model. Protein binding sites predictions were assessed using FT SITE software. We searched for prospective antimalarials from PubChem. Docking experiments were achieved using AutoDock Vina and analysis results visualized in PyMOL. Results: Sanger sequencing generated 86 complete sequences. Upon mapping of the sequences to the reference, 12 non-synonymous single nucleotide polymorphisms were considered for mutant protein structure analysis. Eleven drug compounds with antiplasmodial activity were identified. Both modelled PHISTb/RLP1 reference and mutant structures had a Ramachandran score of >90% of the amino acids in the favored region. Ten of the drug compounds interacted with amino acid residues in PHISTb and RESA domains, showing potential activity against these proteins. Conclusion: These interactions provide lead compounds for new anti-malarial molecules. Further in vivo testing is recommended.