Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35632090

RESUMO

Here, we describe 4-dimethylaminoantipyrine (4-DMAA)-mediated interfacing as a broad biochemical indicator to stabilize and promote the higher response of electrodes for immunological detection. We hypothesized that the improved biological interactions of 4-DMAA with electrodes and biological samples may be due to the interaction properties of the benzene and pyrazole chemical groups with graphite and proteins, respectively. In order to demonstrate that 4-DMAA could be used as a general indicator in electrochemical immunoassays, we used peptides as probes for the diagnosis of four neglected tropical infectious diseases Tegumentary leishmaniasis, Visceral leishmaniasis, Strongyloidiasis, and Leprosy on commercial graphite screen-printed electrodes. 4-DMAA oxidation was used to indicate specific biological recognition between the epitope-based peptide and serum immunoglobulin G (IgG) from infected patients. We demonstrated that 4-DMAA should be incorporated into the electrodes prior to serum application, which avoids interference with its sensitivity and specificity. In addition, 4-DMAA oxidizes at a low anodic potential, and the oxidation peak is useful for detecting proteins in biological fluids. In summary, we have successfully demonstrated the broad application of 4-DMAA as a general indicator for the specific diagnosis of four infectious diseases in electrochemical immunosensors. Such a strategy is quite advantageous for indirect detection of proteins that lack electrochemical activities or are spatially inaccessible on the electrode surface. This new indicator opens a new avenue for monitoring biological recognition, especially for immunosensors.


Assuntos
Técnicas Biossensoriais , Grafite , Aminopirina , Eletrodos , Humanos , Imunoensaio
2.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171773

RESUMO

Considering our previous findings on the remarkable activity exhibited by cobalt(III) with 2-acetylpyridine-N(4)-R-thiosemicarbazone (Hatc-R) compounds against Mycobacterium tuberculosis, the present study aimed to explored new structure features of the complexes of the type [Co(atc--R)2]Cl, where R = methyl (Me, 1) or phenyl (Ph, 2) (13C NMR, high-resolution mass spectrometry, LC-MS/MS, fragmentation study) together with its antibacterial and antiviral biological activities. The minimal inhibitory and minimal bactericidal concentrations (MIC and MBC) were determined, as well as the antiviral potential of the complexes on chikungunya virus (CHIKV) infection in vitro and cell viability. [Co(atc-Ph)2]Cl revealed promising MIC and MBC values which ranged from 0.39 to 0.78 µg/mL in two strains tested and presented high potential against CHIKV by reducing viral replication by up to 80%. The results showed that the biological activity is strongly influenced by the peripheral substituent groups at the N(4) position of the atc-R1- ligands. In addition, molecular docking analysis was performed. The relative binding energy of the docked compound with five bacteria strains was found in the range of -3.45 and -9.55 kcal/mol. Thus, this work highlights the good potential of cobalt(III) complexes and provide support for future studies on this molecule aiming at its antibacterial and antiviral therapeutic application.


Assuntos
Cobalto/farmacologia , Tiossemicarbazonas/química , Antibacterianos/farmacologia , Antivirais/farmacologia , Bactérias/efeitos dos fármacos , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Cromatografia Líquida/métodos , Cobalto/química , Complexos de Coordenação/farmacologia , Ligantes , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem/métodos , Tiossemicarbazonas/farmacologia
3.
Nanomaterials (Basel) ; 11(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671396

RESUMO

Glyphosate detection and quantification is still a challenge. After an extensive review of the literature, we observed that Fourier transform infrared spectroscopy (FTIR) had practically not yet been used for detection or quantification. The interaction between zinc oxide (ZnO), silver oxide (Ag2O), and Ag-doped ZnO nanocrystals (NCs), as well as that between nanocomposite (Ag-doped ZnO/AgO) and glyphosate was analyzed with FTIR to determine whether nanomaterials could be used as signal enhancers for glyphosates. The results were further supported with the use of atomic force microscopy (AFM) imaging. The glyphosate commercial solutions were intensified 10,000 times when incorporated the ZnO NCs. However, strong chemical interactions between Ag and glyphosate may suppress signaling, making FTIR identification difficult. In short, we have shown for the first time that ZnO NCs are exciting tools with the potential to be used as signal amplifiers of glyphosate, the use of which may be explored in terms of the detection of other molecules based on nanocrystal affinity.

4.
J Mol Graph Model ; 86: 219-227, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388696

RESUMO

Experimental results for the antibody known as immunoglobulin G - IgG interacting with phenobarbital were obtained via atomic force microscopy (AFM) and thereafter investigated using computer simulation modeling tools. Using molecular dynamics simulation and docking calculations, the energetically stable configurations of an immobilized antibody over a silicon surface were searched. Six stable configurations of the immobilized antibody over the silicon nitride surface covered by linker molecules were found. Although, only three of them (P1, P2, P5) maintained the Fragment antigen binding available for antigen interaction. Therefore, these configurations were equilibrated after reaching 100 ns molecular dynamics trajectory. The average interaction energy between the surface and the immunoglobulin G - IgG antibody in the P1, P2 and P5 configurations were -62.4 ±â€¯2.4 kcal/mol; -54.3 ±â€¯5.7 kcal/mol, and -360.9 ±â€¯4.2 kcal/mol respectively. Phenobarbital was docked within the Fab domain of P1, P2, and P5 immobilized configurations and equilibrated with molecular dynamics for binding energy estimation. Then, steered molecular dynamics was performed to evaluate unbinding energy pathway between phenobarbital and IgG in each of the three-oriented IgG configurations. No significant differences were observed in the rupture force values (EP1 = 591 ±â€¯13 pN, EP2 = 605 ±â€¯18 pN, and EP5 = 610 ±â€¯45 pN). In comparison, the average AFM experimental results were (641.6 ±â€¯363.3 pN). Therefore, it is worth noting that P5 is the configuration with highest protein-surface interaction. Therefore, the force value calculated for the P5 orientation is statistically more favorable and it is the one to be compared to the experimental data. The agreement between experimental and theoretical results indicates a favorable presented for this study opening new perspectives for antigen-antibody evaluation.


Assuntos
Complexo Antígeno-Anticorpo/química , Modelos Teóricos , Algoritmos , Complexo Antígeno-Anticorpo/imunologia , Microscopia de Força Atômica , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
5.
J Mol Graph Model ; 53: 100-104, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25105958

RESUMO

A stochastic simulation of adsorption processes was developed to simulate the coverage of an atomic force microscope (AFM) tip with enzymes represented as rigid polyhedrons. From geometric considerations of the enzyme structure and AFM tip, we could estimate the average number of active sites available to interact with substrate molecules in the bulk. The procedure was exploited to determine the interaction force between acetyl-CoA carboxylase enzyme (ACC enzyme) and its substrate diclofop, for which steered molecular dynamics (SMD) was used. The theoretical force of (1.6±0.5) nN per enzyme led to a total force in remarkable agreement with the experimentally measured force with AFM, thus demonstrating the usefulness of the procedure proposed here to assist in the interpretation of nanobiosensors experiments.


Assuntos
Enzimas Imobilizadas/química , Acetil-CoA Carboxilase/antagonistas & inibidores , Acetil-CoA Carboxilase/química , Técnicas Biossensoriais , Domínio Catalítico , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Éteres Fenílicos/química , Propionatos/química , Ligação Proteica , Estrutura Quaternária de Proteína , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química , Processos Estocásticos , Termodinâmica
6.
J Mol Graph Model ; 45: 128-36, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24029365

RESUMO

The immobilization of enzymes on atomic force microscope tip (AFM tip) surface is a crucial step in the development of nanobiosensors to be used in detection process. In this work, an atomistic modeling of the attachment of the acetyl coenzyme A carboxylase (ACC enzyme) on a functionalized AFM tip surface is proposed. Using electrostatic considerations, suitable enzyme-surface orientations with the active sites of the ACC enzyme available for interactions with bulk molecules were found. A 50 ns molecular dynamics trajectory in aqueous solution was obtained and surface contact area, hydrogen bonding and protein stability were analyzed. The enzyme-surface model proposed here with minor adjustment can be applied to study antigen-antibody interactions as well as enzyme immobilization on silica for chromatography applications.


Assuntos
Enzimas/química , Modelos Moleculares , Domínio Catalítico , Enzimas/metabolismo , Ligação de Hidrogênio , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Eletricidade Estática , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA