Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biodivers ; 19(2): e202100646, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34982514

RESUMO

Multidrug resistance is a significant drawback in malaria treatment, and mutations in the active sites of the many critical antimalarial drug targets have remained challenging. Therefore, this has necessitated the global search for new drugs with new mechanisms of action. Plasmodium falciparum lactate dehydrogenase (pfLHD), a glycolytic enzyme, has emerged as a potential target for developing new drugs due to the parasite reliance on glycolysis for energy. Strong substrate-binding is required in pfLDH enzymatic catalysis; however, there is a lack of information on small molecules' inhibitory mechanism bound to the substrate-binding pocket. Therefore, this study investigated a potential allosteric inhibition of pfLDH by targeting the substrate-binding site. The structural and functional behaviour of madecassic acid (MA), the most promising among the six triterpenes bound to pfLDH, were unravelled using molecular dynamic simulations at 300 ns to gain insights into its mechanism of binding and inhibition and chloroquine as a standard drug. The docking studies identified that the substrate site has the preferred position for the compounds even in the absence of a co-factor. The bound ligands showed comparably higher binding affinity at the substrate site than at the co-factor site. Mechanistically, a characteristic loop implicated in the enzyme catalytic activity was identified at the substrate site. This loop accommodates key interacting residues (LYS174, MET175, LEU177 and LYS179) pivotal in the MA binding and inhibitory action. The MA-bound pfLHD average RMSD (1.60 Å) relative to chloroquine-bound pfLHD RMSD (2.00 Å) showed higher stability for the substrate pocket, explaining the higher binding affinity (-33.40 kcal/mol) observed in the energy calculations, indicating that MA exhibited profound inhibitory activity. The significant pfLDH loop conformational changes and the allostery substrate-binding landscape suggested inhibiting the enzyme function, which provides an avenue for designing antimalarial compounds in the future studies of pfLDH protein as a target.


Assuntos
Antimaláricos , Combretum , Triterpenos , Antimaláricos/química , Antimaláricos/farmacologia , Combretum/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Plasmodium falciparum , Triterpenos/farmacologia
2.
Curr Top Med Chem ; 23(12): 1065-1080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36698229

RESUMO

BACKGROUND: ß-ketoacyl-ACP synthase I (KasA I) enzyme is crucial in mycolic acid synthesis via catalytic condensation reactions, hence implicated in M. tuberculosis's virulence and drug resistance. Presently, there is no known potent KasA inhibitor; thiolactomycin lacks potency. Recently reported indazole compounds JSF-3285/tr1DG167 and 5G/tr2DG167 inhibit the KasA through binding to the substrate cavity. However, the molecular mechanism is still unclear, and the unknown resistance mechanisms raise concerns about JSF-3285's novelty. METHODS: This study is the first to report the flap dimer opening and closing of the KasA pocket using combined metrics to define the symmetry impact of the flap-dimer motions and investigate the underlying inhibitory mechanism of tr1DG167 andtr2DG167 using all-atom MD simulation. RESULTS: The distance/d1 between the flap (PRO147) and dimer (LEU205) residues; TriC-α angle (θ1: PRO147-VAL83-LEU205 & θ2: PRO147-GLU199-LEU205); and the dihedral angle (Φ) were applied to investigate the flap "twisting" and dimer shift closing due to concerted motion by adjacent glycine-rich and glutamic acid-rich loops around the active site during the binding pocket's opening. The full flap-dimer of the unbound opens at 230 ns (d1 = 21.51 Å), corresponding to the largest TriC-α angle θ1 44.5° as θ2 is unreliable to describe the flap-dimer motion. The overall averages θ1 and θ2 for the bounds were ~23.13° and ~23.31°, respectively. Thus, the degree of KasA flap dimer opening is best investigated by distance and θ1. BFE (Kcal/mol) of -44.05 (tr1DG167) showed a higher affinity for the pocket than tr2DG167-KasA (-32.16). Both tr1DG167 and tr2DG167 formed hydrophobic interactions with LEU116, GLY117, ALA119, and tr1DG167 formed strong H-bonds with GLU199. The average RMSD of 2.80 Å (Apo) and RoG of 20.97 Å showed that KasA is less stable and less tightly packed without the inhibitors. CONCLUSION: These findings provide a background for a new structure-based design of novel KasA inhibitors.


Assuntos
Mycobacterium tuberculosis , Ligação Proteica , Simulação por Computador , Domínio Catalítico , Simulação de Dinâmica Molecular
3.
J Ethnopharmacol ; 247: 112203, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31472271

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Combretum racemosum showed activity in previous ethnopharmacological investigations of some Combretum species used in malaria treatment in parts of West Africa. AIM OF THE STUDY: This study aimed at confirming the antimalarial potential of this plant by an activity-guided isolation of its active principles. MATERIALS AND METHODS: A crude methanolic leaf extract of Combretum racemosum and fractions thereof obtained by partition with chloroform and n-butanol were investigated for antiplasmodial activity against chloroquine-sensitive (D10) and chloroquine-resistant (W2) strains of Plasmodium falciparum. Repeated chromatographic separations were conducted on the chloroform fraction to isolate bioactive compounds for further tests on antiplasmodial activity. The characterization of the isolated substances was performed by applying NMR- and MS-techniques (ESI-MS, HR-ESIMS, 1D and 2D NMR). RESULTS: The chloroform fraction (D10: IC50 = 33.8 ±â€¯1.5 µg/mL and W2: IC50 = 27.8 ±â€¯2.9 µg/mL) exhibited better antiplasmodial activity than the n-butanol fraction (D10: IC50 = 78.1 ±â€¯7.3 µg/mL and W2: IC50 = 78 ±â€¯15 µg/mL) as well as the methanolic raw extract (D10: IC50 = 64.2 ±â€¯2.7 µg/mL and W2: IC50 = 65.8 ±â€¯14.9 µg/mL). Thus, the focus of the phytochemical investigation was laid on the chloroform fraction, which led to the identification of four ursane-type (19α-hydroxyasiatic acid (1), 6ß,23-dihydroxytormentic acid (4), madecassic acid (8), nigaichigoside F1 (10)) and four oleanane-type (arjungenin (2), combregenin (5), terminolic acid (7), arjunglucoside I (11)) triterpenes, as well as abscisic acid (9). Compounds 1 and 2, 4 and 5, 7 and 8 as well as 10 and 11 were isolated as isomeric mixtures in fractions CR-A, CR-C, CR-E and CR-H, respectively. All isolated compounds and mixtures exhibited moderate to low activity, with madecassic acid being most active (D10: IC50 = 28 ±â€¯12 µg/mL and W2: IC50 = 17.2 ±â€¯4.3 µg/mL). CONCLUSION: This paper reports for the first time antiplasmodial principles from C. racemosum and thereby gives reason to the traditional use of the plant.


Assuntos
Antimaláricos/farmacologia , Combretum/química , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Triterpenos/farmacologia , África Ocidental , Animais , Antimaláricos/isolamento & purificação , Antimaláricos/uso terapêutico , Etnofarmacologia , Humanos , Malária/tratamento farmacológico , Malária/parasitologia , Medicinas Tradicionais Africanas/métodos , Metanol/química , Testes de Sensibilidade Parasitária , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Triterpenos/isolamento & purificação , Triterpenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA