RESUMO
OBJECTIVE: Several monogenic autoinflammatory disorders and primary immunodeficiencies can present early in life with features that may be mistaken for Behçet's disease (BD). We aimed to develop a genetic analysis workflow to identify rare monogenic BD-like diseases and establish the contribution of HLA haplotype in a cohort of patients from the UK. METHODS: Patients with clinically suspected BD were recruited from four BD specialist care centres in the UK. All participants underwent whole exome sequencing (WES), and genetic analysis thereafter by 1. examining genes known to cause monogenic immunodeficiency, autoinflammation or vasculitis by virtual panel application; 2. scrutiny of variants prioritised by Exomiser using Human Phenotype Ontology (HPO); 3. identification of copy number variants using ExomeDepth; and 4. HLA-typing using OptiType. RESULTS: Thirty-one patients were recruited: median age 15 (4-52), and median disease onset age 5 (0-20). Nine/31 (29%) patients had monogenic disease mimicking BD: 5 cases of Haploinsufficiency of A20 with novel TNFAIP3 variants (p.T76I, p.M112Tfs*8, p.S548Dfs*128, p.C657Vfs*14, p.E661Nfs*36); 1 case of ISG15 deficiency with a novel nonsense variant (ISG15:p.Q16X) and 1p36.33 microdeletion; 1 case of Common variable immune deficiency (TNFRSF13B:p.A181E); and 2 cases of TNF receptor associated periodic syndrome (TNFRSF1A:p.R92Q). Of the remaining 22 patients, 8 (36%) were HLA-B*51 positive. CONCLUSION: We describe a novel genetic workflow for BD, which can efficiently detect known and potentially novel monogenic forms of BD, whilst additionally providing HLA-typing. Our results highlight the importance of genetic testing before BD diagnosis, since this has impact on choice of therapy, prognosis, and genetic counselling.
RESUMO
OBJECTIVES: Hereditary systemic autoinflammatory diseases are rare genetic disorders, which if untreated, can be complicated by AA amyloidosis leading to renal failure and premature death. Our objective was to find a genetic cause in a British family with a dominantly inherited autoinflammatory disease complicated by AA amyloidosis. METHODS: The index patient and his sister underwent comprehensive clinical and laboratory assessment including the next-generation sequencing panel targeting autoinflammatory genes. Subsequently, other relatives underwent clinical evaluation and genetic testing. Screening of the SAA1 gene was performed in all symptomatic cases. RESULTS: The index case and his sister presented with proteinuria due to AA amyloidosis. They have been suffering from episodes of fever accompanied by severe abdominal and chest pain, arthritis and erythema since childhood. Their father died aged 52 years from complications following a cadaveric renal transplantation. The post-mortem examination demonstrated AA amyloidosis. The index case's grandmother, two paternal cousins and two of their children described similar symptoms. All symptomatic individuals had excellent responses to colchicine. Next-generation sequencing analysis identified a single MEFV p.P373L variant in the index case, his sister and subsequently, in symptomatic family members. Sequencing of the SAA1 gene revealed all cases were heterozygous for the SAA1.1 allele. CONCLUSION: Typically FMF is an autosomal recessive disorder; nonetheless rare cases of dominantly inherited disease have previously been described. Here we report a novel MEFV variant p.P373L, causing dominant FMF complicated by AA amyloidosis in four generations of a British family.
Assuntos
Amiloidose/genética , Febre Familiar do Mediterrâneo/genética , Pirina/genética , Adulto , Amiloidose/tratamento farmacológico , Colchicina/uso terapêutico , Febre Familiar do Mediterrâneo/tratamento farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Resultado do Tratamento , Moduladores de Tubulina/uso terapêuticoRESUMO
To date, the pathogenic mechanisms underlying Schnitzler syndrome remain obscure, in particular, the interplay between the monoclonal protein and increased interleukin-1ß (IL-1ß) production, although interest in the contribution of genetic factors has been fueled by detection of somatic NLRP3 mosaicism in 2 patients with the variant-type Schnitzler syndrome. At 2 specialist UK centers, we have identified 21 patients who fulfilled diagnostic criteria for Schnitzler syndrome with urticarial rash, fever, arthralgia, and bone pain; 47% reported weight loss, 40% fatigue, and 21% lymphadenopathy. An immunoglobulin M (IgM) κ paraprotein was detected in 86%; the remainder had IgM λ or IgG κ. Patients underwent searches for germ line and somatic mutations using next-generation sequencing technology. Moreover, we designed a panel consisting of 32 autoinflammatory genes to explore genetic susceptibility factor(s) to Schnitzler syndrome. Genetic analysis revealed neither germ line nor somatic NLRP3, TNFRSF1A, NLRC4, or NOD2 mutations, apart from 1 patient with a germ line NLRP3 p.V198M substitution. The proinflammatory cytokines and extracellular apoptosis-associated speck-like protein with caspase recruitment domain (ASC) measured in the serum of Schnitzler syndrome patients during active disease were significantly higher than healthy controls. Ninety-five percent of our cohort achieved a complete response to recombinant IL-1 receptor antagonist (anakinra). Our findings do not support a role for somatic NLRP3 mosaicism in disease pathogenesis; although elevated levels of ASC, IL-6, and IL-18 in patients' serum, and the response to anakinra, suggest that Schnitzler syndrome is associated with upregulated inflammasome activation. Despite its rarity, Schnitzler syndrome is an important diagnosis as treatment with IL-1 antagonists dramatically improves quality of life for patients.
Assuntos
Mutação em Linhagem Germinativa , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Síndrome de Schnitzler , Adulto , Idoso , Substituição de Aminoácidos , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Humanos , Interleucina-18/sangue , Interleucina-18/genética , Interleucina-6/sangue , Interleucina-6/genética , Masculino , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Síndrome de Schnitzler/sangue , Síndrome de Schnitzler/tratamento farmacológico , Síndrome de Schnitzler/genéticaAssuntos
Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/genética , Azetidinas/uso terapêutico , Desoxirribonucleases/genética , Inibidores de Janus Quinases/uso terapêutico , Sulfonamidas/uso terapêutico , Criança , Desoxirribonucleases/deficiência , Feminino , Humanos , Mutação de Sentido Incorreto , Linhagem , Purinas , PirazóisAssuntos
Dermatomiosite , Interferon Tipo I , Inibidores de Janus Quinases , Azetidinas , Humanos , Janus Quinase 1 , Purinas , Pirazóis , SulfonamidasAssuntos
Anti-Inflamatórios/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Azetidinas/uso terapêutico , Encefalopatias/tratamento farmacológico , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Sulfonamidas/uso terapêutico , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Adolescente , Doenças Autoimunes/diagnóstico por imagem , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Encéfalo/diagnóstico por imagem , Encefalopatias/diagnóstico por imagem , Encefalopatias/genética , Encefalopatias/imunologia , Criança , Pré-Escolar , Citocinas/sangue , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Mutação , Purinas , Pirazóis , Tomografia Computadorizada por Raios XRESUMO
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by variants in the extracellular microfibril fibrillin (FBN1) gene. Here we report an FBN1 variant in a child with an unusual skin rash mimicking cutaneous vasculitis, and mild aortic root dilatation. The case was complicated by lack of typical skeletal MFS phenotype; and severe needle phobia preventing any blood testing for workup of suspected vasculitis. Therefore inflammatory markers, autoantibody profile and general hematology/biochemistry results were unknown. Diagnosis of MFS was made via genetic testing of a saliva sample alone using a next-generation sequencing (NGS) targeted gene panel designed to screen for monogenic forms of vasculitis and noninflammatory vasculopathic mimics. This revealed the patient was heterozygous for a pathogenic frameshift variant in FBN1; NM_000138, c.1211delC, p.(Pro404Hisfs*44), predicted to cause premature protein truncation leading to loss of function. The variant has not been detected in control populations and has previously been detected in individuals with MFS. This rapid diagnosis significantly impacted the patient management: avoidance of invasive investigations; avoidance of unnecessary immunosuppression; facilitating genetic counselling of the index case and family; and directly informing lifelong monitoring and ongoing treatment for aortic root involvement from MFS. This case further emphasizes the diagnostic utility of NGS early in the diagnostic workup of paediatric patients referred with suspected vasculitis, and we emphasize that MFS can present with cutaneous vasculitic-like features in the absence of the typical Marfanoid skeletal phenotype.
RESUMO
Introduction: Accurate and standardized phenotypic descriptions are essential in diagnosing rare diseases and discovering new diseases, and the Human Phenotype Ontology (HPO) system was developed to provide a rich collection of hierarchical phenotypic descriptions. However, although the HPO terms for inborn errors of immunity have been improved and curated, it has not been investigated whether this curation improves the diagnosis of systemic autoinflammatory disease (SAID) patients. Here, we aimed to study if improved HPO annotation for SAIDs enhanced SAID identification and to demonstrate the potential of phenotype-driven genome diagnostics using curated HPO terms for SAIDs. Methods: We collected HPO terms from 98 genetically confirmed SAID patients across eight different European SAID expertise centers and used the LIRICAL (Likelihood Ratio Interpretation of Clinical Abnormalities) computational algorithm to estimate the effect of HPO curation on the prioritization of the correct SAID for each patient. Results: Our results show that the percentage of correct diagnoses increased from 66% to 86% and that the number of diagnoses with the highest ranking increased from 38 to 45. In a further pilot study, curation also improved HPO-based whole-exome sequencing (WES) analysis, diagnosing 10/12 patients before and 12/12 after curation. In addition, the average number of candidate diseases that needed to be interpreted decreased from 35 to 2. Discussion: This study demonstrates that curation of HPO terms can increase identification of the correct diagnosis, emphasizing the high potential of HPO-based genome diagnostics for SAIDs.
Assuntos
Doenças Hereditárias Autoinflamatórias , Síndrome de Imunodeficiência Adquirida dos Símios , Humanos , Animais , Projetos Piloto , Bases de Dados Genéticas , Fenótipo , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/genéticaRESUMO
We describe a novel, severe autoinflammatory syndrome characterized by neuroinflammation, systemic autoinflammation, splenomegaly, and anemia (NASA) caused by bi-allelic mutations in IRAK4. IRAK-4 is a serine/threonine kinase with a pivotal role in innate immune signaling from toll-like receptors and production of pro-inflammatory cytokines. In humans, bi-allelic mutations in IRAK4 result in IRAK-4 deficiency and increased susceptibility to pyogenic bacterial infections, but autoinflammation has never been described. We describe 5 affected patients from 2 unrelated families with compound heterozygous mutations in IRAK4 (c.C877T (p.Q293*)/c.G958T (p.D320Y); and c.A86C (p.Q29P)/c.161 + 1G>A) resulting in severe systemic autoinflammation, massive splenomegaly and severe transfusion dependent anemia and, in 3/5 cases, severe neuroinflammation and seizures. IRAK-4 protein expression was reduced in peripheral blood mononuclear cells (PBMC) in affected patients. Immunological analysis demonstrated elevated serum tumor necrosis factor (TNF), interleukin (IL) 1 beta (IL-1ß), IL-6, IL-8, interferon α2a (IFN-α2a), and interferon ß (IFN-ß); and elevated cerebrospinal fluid (CSF) IL-6 without elevation of CSF IFN-α despite perturbed interferon gene signature. Mutations were located within the death domain (DD; p.Q29P and splice site mutation c.161 + 1G>A) and kinase domain (p.Q293*/p.D320Y) of IRAK-4. Structure-based modeling of the DD mutation p.Q29P showed alteration in the alignment of a loop within the DD with loss of contact distance and hydrogen bond interactions with IRAK-1/2 within the myddosome complex. The kinase domain mutation p.D320Y was predicted to stabilize interactions within the kinase active site. While precise mechanisms of autoinflammation in NASA remain uncertain, we speculate that loss of negative regulation of IRAK-4 and IRAK-1; dysregulation of myddosome assembly and disassembly; or kinase active site instability may drive dysregulated IL-6 and TNF production. Blockade of IL-6 resulted in immediate and complete amelioration of systemic autoinflammation and anemia in all 5 patients treated; however, neuroinflammation has, so far proven recalcitrant to IL-6 blockade and the janus kinase (JAK) inhibitor baricitinib, likely due to lack of central nervous system penetration of both drugs. We therefore highlight that bi-allelic mutation in IRAK4 may be associated with a severe and complex autoinflammatory and neuroinflammatory phenotype that we have called NASA (neuroinflammation, autoinflammation, splenomegaly and anemia), in addition to immunodeficiency in humans.
Assuntos
Anemia , Leucócitos Mononucleares , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Esplenomegalia/genética , Interleucina-6 , Doenças Neuroinflamatórias , Anemia/genética , MutaçãoRESUMO
ISG15 deficiency is a rare disease caused by autosomal recessive variants in the ISG15 gene, which encodes the ISG15 protein. The ISG15 protein plays a dual role in both the type I and II interferon (IFN) immune pathways. Extracellularly, the ISG15 protein is essential for IFN-γ-dependent anti-mycobacterial immunity, while intracellularly, ISG15 is necessary for USP18-mediated downregulation of IFN-α/ß signalling. Due to this dual role, ISG15 deficiency can present with various clinical phenotypes, ranging from susceptibility to mycobacterial infection to autoinflammation characterised by necrotising skin lesions, intracerebral calcification, and pulmonary involvement. In this report, we describe novel variants found in two different families that result in complete ISG15 deficiency and severe skin ulceration. Whole exome sequencing identified a heterozygous missense p.Q16X ISG15 variant and a heterozygous multigene 1p36.33 deletion in the proband from the first family. In the second family, a homozygous total ISG15 gene deletion was detected in two siblings. We also conducted further analysis, including characterisation of cytokine dysregulation, interferon-stimulated gene expression, and p-STAT1 activation in lymphocytes and lesional tissue. Finally, we demonstrate the complete and rapid resolution of clinical symptoms associated with ISG15 deficiency in one sibling from the second family following treatment with the Janus kinase (JAK) inhibitor baricitinib.
Assuntos
Citocinas , Ubiquitinas , Humanos , Ubiquitinas/metabolismo , Citocinas/metabolismo , Interferons , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismoRESUMO
Neutrophilic inflammation is a hallmark of many monogenic autoinflammatory diseases; pathomechanisms that regulate extravasation of damaging immune cells into surrounding tissues are poorly understood. Here we identified three unrelated boys with perinatal-onset of neutrophilic cutaneous small vessel vasculitis and systemic inflammation. Two patients developed liver fibrosis in their first year of life. Next-generation sequencing identified two de novo truncating variants in the Src-family tyrosine kinase, LYN, p.Y508*, p.Q507* and a de novo missense variant, p.Y508F, that result in constitutive activation of Lyn kinase. Functional studies revealed increased expression of ICAM-1 on induced patient-derived endothelial cells (iECs) and of ß2-integrins on patient neutrophils that increase neutrophil adhesion and vascular transendothelial migration (TEM). Treatment with TNF inhibition improved systemic inflammation; and liver fibrosis resolved on treatment with the Src kinase inhibitor dasatinib. Our findings reveal a critical role for Lyn kinase in modulating inflammatory signals, regulating microvascular permeability and neutrophil recruitment, and in promoting hepatic fibrosis.
Assuntos
Células Endoteliais , Vasculite , Quinases da Família src , Humanos , Dasatinibe , Células Endoteliais/metabolismo , Inflamação/metabolismo , Neutrófilos/metabolismo , Fosforilação , Quinases da Família src/genética , Quinases da Família src/metabolismo , Vasculite/genéticaRESUMO
OBJECTIVE: The role of the adaptive immune system has not been explored in detail compared with the innate immune system in systemic JIA (sJIA) pathogenesis. The aim of this study was to examine the phenotype of circulating peripheral blood CD4(+) T-cell subpopulations in a cross-sectional study of sJIA patients during disease remission on medication and during acute flare of the disease. METHODS: Flow cytometry was used to examine the phenotype and cytokine production of IFNγ-, IL-4- and IL-17-producing CD4(+) T cells in the peripheral blood of 10 sJIA patients with active disease, 9 sJIA with inactive disease, 14 JIA patients with oligoarticular onset, 10 adult control subjects and 10 age-matched control subjects. In parallel, we examined the proportion of FoxP3(+) Tregs. RESULTS: IFNγ- and IL-17-producing CD4(+) T cells and IL-17-producing CD3(+)CD4(-) T cells were present at higher proportions in the peripheral blood of sJIA patients, irrespective of their disease status. Our data also confirm the known increase of the proportions of IFNγ-producing Th1 cells with increasing age and suggest an increase with age in the IL-17-producing CD4(+) T-cell population. CONCLUSION: This study is the first to describe significantly higher proportions of Th1 and Th17 T helper cell subsets in the peripheral blood of sJIA patients. These proinflammatory cells may play a pathogenic role in sJIA. Our data also emphasize the importance of using paediatric age-matched control subjects when evaluating the T-cell cytokine profile in JIA.
Assuntos
Artrite Juvenil/imunologia , Células Th1/patologia , Células Th17/patologia , Adolescente , Artrite Juvenil/sangue , Artrite Juvenil/patologia , Criança , Pré-Escolar , Estudos Transversais , Citocinas/biossíntese , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Contagem de Linfócitos , Masculino , Células Th1/imunologia , Células Th17/imunologiaRESUMO
There is an important unmet clinical need for fast turnaround next generation sequencing (NGS) to aid genetic diagnosis of patients with acute and sometimes catastrophic inflammatory presentations. This is imperative for patients who require precise and targeted treatment to prevent irreparable organ damage or even death. Acute and severe hyper- inflammation may be caused by primary immunodeficiency (PID) with immune dysregulation, or more typical autoinflammatory diseases in the absence of obvious immunodeficiency. Infectious triggers may be present in either immunodeficiency or autoinflammation. We compiled a list of 25 genes causing monogenetic immunological diseases that are notorious for their acute first presentation with fulminant inflammation and which may be amenable to specific treatment, including hemophagocytic lymphohistiocytosis (HLH); and autoinflammatory diseases that can present with early-onset stroke or other irreversible neurological inflammatory complications. We designed and validated a pipeline that enabled return of clinically actionable results in hours rather than weeks: the Rapid Autoinflammation Panel (RAP). We demonstrated accuracy of this new pipeline, with 100% sensitivity and 100% specificity. Return of results to clinicians was achieved within 48-hours from receiving the patient's blood or saliva sample. This approach demonstrates the potential significant diagnostic impact of NGS in acute medicine to facilitate precision medicine and save "life or limb" in these critical situations.
Assuntos
Doenças Hereditárias Autoinflamatórias , Doenças do Sistema Imunitário , Síndromes de Imunodeficiência , Doenças Hereditárias Autoinflamatórias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndromes de Imunodeficiência/genética , Inflamação/genéticaRESUMO
Background Idiopathic recurrent pericarditis (IRP) is an orphan disease that carries significant morbidity, partly driven by corticosteroid dependence. Innate immune modulators, colchicine and anti-interleukin-1 agents, pioneered in monogenic autoinflammatory diseases, have demonstrated remarkable efficacy in trials, suggesting that autoinflammation may contribute to IRP. This study characterizes the phenotype of patients with IRP and monogenic autoinflammatory diseases, and establishes whether autoinflammatory disease genes are associated with IRP. Methods and Results We retrospectively analyzed the medical records of patients with IRP (n=136) and monogenic autoinflammatory diseases (n=1910) attending a national center (London, UK) between 2000 and 2021. We examined 4 genes (MEFV, MVK, NLRP3, TNFRSF1A) by next-generation sequencing in 128 patients with IRP and compared the frequency of rare deleterious variants to controls obtained from the Genome Aggregation Database. In this cohort of patients with IRP, corticosteroid dependence was common (39/136, 28.7%) and was associated with chronic pain (adjusted odds ratio 2.8 [95% CI, 1.3-6.5], P=0.012). IRP frequently manifested with systemic inflammation (raised C-reactive protein [121/136, 89.0%] and extrapericardial effusions [68/136, 50.0%]). Pericarditis was observed in all examined monogenic autoinflammatory diseases (0.4%-3.7% of cases). Rare deleterious MEFV variants were more frequent in IRP than in ancestry-matched controls (allele frequency 9/200 versus 2932/129 200, P=0.040). Conclusions Pericarditis is a feature of interleukin-1 driven monogenic autoinflammatory diseases and IRP is associated with variants in MEFV, a gene involved in interleukin-1ß processing. We also found that corticosteroid dependence in IRP is associated with chronic noninflammatory pain. Together these data implicate autoinflammation in IRP and support reducing reliance on corticosteroids in its management.
Assuntos
Doenças Hereditárias Autoinflamatórias , Pericardite , Corticosteroides , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/tratamento farmacológico , Doenças Hereditárias Autoinflamatórias/genética , Humanos , Pericardite/diagnóstico , Pericardite/tratamento farmacológico , Pericardite/genética , Pirina/genética , Encaminhamento e Consulta , Estudos RetrospectivosRESUMO
Deficiency of adenosine deaminase type 2 (DADA2) is an autosomal recessive disease caused by bi-allelic loss-of-function mutations in ADA2. Treatment with anti-TNF is effective for the autoinflammatory and vasculitic components of the disease but does not correct marrow failure or immunodeficiency; and anti-drug antibodies cause loss of efficacy over time. Allogeneic haematopoietic stem cell transplantation may be curative, but graft versus host disease remains a significant concern. Autologous gene therapy would therefore be an attractive longer-term therapeutic option. We investigated whether lentiviral vector (LV)-mediated ADA2 gene correction could rescue the immunophenotype of DADA2 in primary immune cells derived from patients and in cell line models. Lentiviral transduction led to: i) restoration of ADA2 protein expression and enzymatic activity; (ii) amelioration of M1 macrophage cytokine production, IFN-γ and phosphorylated STAT1 expression in patient-derived macrophages; and (iii) amelioration of macrophage-mediated endothelial activation that drives the vasculitis of DADA2. We also successfully transduced human CD34+ haematopoietic stem progenitor cells (HSPC) derived from a DADA2 patient with pure red cell aplasia and observed restoration of ADA2 expression and enzymatic activity in CD34+HSPC, alongside recovery of stem-cell proliferative and colony forming unit capacity. These preclinical data now expand the evidence for the efficacy of gene transfer strategies in DADA2, and strongly support clinical translation of a lentivirus-mediated gene therapy approach to treat DADA2.
Assuntos
Agamaglobulinemia , Terapia Genética , Imunodeficiência Combinada Severa , Vasculite , Adenosina Desaminase/genética , Agamaglobulinemia/terapia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Imunodeficiência Combinada Severa/terapia , Inibidores do Fator de Necrose Tumoral , Vasculite/terapiaRESUMO
BACKGROUND: Mevalonate kinase deficiency (MKD) is a rare autoinflammatory condition caused by biallelic loss-of-function (LOF) mutations in mevalonate kinase (MVK) gene encoding the enzyme mevalonate kinase. Patients with MKD display a variety of non-specific clinical manifestations, which can lead to diagnostic delay. We report the case of a child presenting with vasculitis that was found by genetic testing to be caused by MKD, and now add this autoinflammatory disease to the ever-expanding list of causes of monogenic vasculitides. CASE PRESENTATION: A 2-year-old male presented with an acute 7-day history of high-grade fever, abdominal pain, diarrhoea, rectal bleeding and extensive purpuric and necrotic lesions, predominantly affecting the lower limbs. He had been suffering from recurrent episodes of fever from early in infancy, associated with maculopapular/petechial rashes triggered by intercurrent infection, and after vaccines. Extensive infection screen was negative. Skin biopsy revealed small vessel vasculitis. Visceral digital subtraction arteriography was normal. With a diagnosis of severe idiopathic cutaneous vasculitis, he was treated with corticosteroids and mycophenolate mofetil. Despite that his acute phase reactants remained elevated, fever persisted and the vasculitic lesions progressed. Next-generation sequencing revealed compound heterozygous mutation in MVK c.928G > A (p.V310M) and c.1129G > A (p.V377I) while reduced mevalonate enzyme activity was confirmed suggesting a diagnosis of MKD as a cause of the severe vasculitis. Prompt targeted treatment with IL-1 blockade was initiated preventing escalation to more toxic vasculitis therapies and reducing unnecessary exposure to cytotoxic treatment. CONCLUSIONS: Our report highlights the broad clinical phenotype of MKD that includes severe cutaneous vasculitis and emphasizes the need to consider early genetic screening for young children presenting with vasculitis to exclude a monogenic vasculitis which may be amenable to targeted treatment.
Assuntos
DNA/genética , Diagnóstico Tardio , Deficiência de Mevalonato Quinase/complicações , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Vasculite/etiologia , Biópsia , Pré-Escolar , Análise Mutacional de DNA , Diagnóstico Diferencial , Testes Genéticos , Genótipo , Humanos , Masculino , Deficiência de Mevalonato Quinase/diagnóstico , Deficiência de Mevalonato Quinase/genética , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Pele/patologia , Vasculite/diagnósticoRESUMO
BACKGROUND: Myhre syndrome is a genetic disorder caused by gain of function mutations in the SMAD Family Member 4 (SMAD4) gene, resulting in progressive, proliferative skin and organ fibrosis. Skin thickening and joint contractures are often the main presenting features of the disease and may be mistaken for juvenile scleroderma. CASE PRESENTATION: We report a case of a 13 year-old female presenting with widespread skin thickening and joint contractures from infancy. She was diagnosed with diffuse cutaneous systemic sclerosis, and treatment with corticosteroids and subcutaneous methotrexate recommended. There was however disease progression prompting genetic testing. This identified a rare heterozygous pathogenic variant c.1499 T > C (p.Ile500Thr) in the SMAD4 gene, suggesting a diagnosis of Myhre syndrome. Securing a molecular diagnosis in this case allowed the cessation of immunosuppression, thus reducing the burden of unnecessary and potentially harmful treatment, and allowing genetic counselling. CONCLUSION: Myhre Syndrome is a rare genetic mimic of scleroderma that should be considered alongside several other monogenic diseases presenting with pathological fibrosis from early in life. We highlight this case to provide an overview of these genetic mimics of scleroderma, and highlight the molecular pathways that can lead to pathological fibrosis. This may provide clues to the pathogenesis of sporadic juvenile scleroderma, and could suggest novel therapeutic targets.
Assuntos
Criptorquidismo/diagnóstico , Transtornos do Crescimento/diagnóstico , Deformidades Congênitas da Mão/diagnóstico , Deficiência Intelectual/diagnóstico , Esclerodermia Localizada/diagnóstico , Escleroderma Sistêmico/diagnóstico , Adolescente , Criptorquidismo/genética , Criptorquidismo/patologia , Diagnóstico Diferencial , Fácies , Feminino , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/patologia , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Angioscopia Microscópica , Pele/patologia , Proteína Smad4/genéticaRESUMO
We identified a consanguineous kindred, of three affected children with severe autoinflammation, resulting in the death of one sibling and allogeneic stem cell transplantation in the other two. All three were homozygous for MEFV p.S208C mutation; however, their phenotype was more severe than previously reported, prompting consideration of an oligogenic autoinflammation model. Further genetic studies revealed homozygous mutations in TRAP1, encoding the mitochondrial/ER resident chaperone protein tumour necrosis factor receptor associated protein 1 (TRAP1). Identification of a fourth, unrelated patient with autoinflammation and compound heterozygous mutation of TRAP1 alone facilitated further functional studies, confirming the importance of this protein as a chaperone of misfolded proteins with loss of function, which may contribute to autoinflammation. Impaired TRAP1 function leads to cellular stress and elevated levels of serum IL-18. This study emphasizes the importance of considering digenic or oligogenic models of disease in particularly severe phenotypes and suggests that autoinflammatory disease might be enhanced by bi-allelic mutations in TRAP1.