Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 38(35): 10893-10901, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36007164

RESUMO

The organization of the self-assembled monolayer (SAM) determines its electronic structure and so governs the charge transport process and device performance when adopted into a molecular device. We report a systematic study on the supramolecular structure and rectification performance of the ferrocene (11-ferrocenyl-1-undecanethiol, FUT) based SAM modulated by mixed SAM with inert 1-undecanethiol (C11SH) as diluent. We compared mixed SAMs by two different post assembly strategies, i.e., post assembly of C11SH on FUT SAM and post assembly of FUT on C11SH SAM. The organization and structure of FUT in the mixed SAM were extensively studied by cyclic voltammetry (CV) using the Laviron model. Rectification properties of the mixed SAM obtained using eutectic indium gallium (EGaIn) as the top electrode revealed that the magnitude and stability of the rectification ratio (RR) strongly correlated to not only the amount but also the phase structure and orientation of the FUT in the monolayer, resulting in a tunable RR and increased stability. The mixed monolayer achieved an increased performance relative to pure FUT by post assembling FUT on C11SH SAM, which formed an optimally dense and well-packed monolayer with the FUT head resting on the top of the alkane SAM.

2.
Phys Chem Chem Phys ; 24(19): 11958-11966, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35531608

RESUMO

A single level tunneling model has been the most popular model system in both experimental and theoretical studies of molecular junctions. We performed a detailed simulation study on the performance of the single level tunneling model for analyzing the charge transport in molecular junctions. Three different modeling methods, including the numerical integration of the Landauer formula and two approximated analytical formulas that are extensively used for extracting key transport parameters, i.e. the energy offset and the coupling strength between molecules and electrodes from current-voltage (I-V) characteristics were compared and evaluated for their applicability. The simulation of I-V plots shows that the applicability of the two approximated analytical models is dependent on the energy offset and coupling strength. Model analysis based on the three methods performed on experimental data obtained from representative literature papers revealed that the two approximated analytical methods are neither suitable for small coupling strength nor suitable for low energy offset, and they also deviated from the exact results at high bias. These results imply that the transport parameters by the model analysis can be wrong if the models were not correctly applied under their intrinsic constraints, therefore providing wrong physical information about the system. We finally provided an applicability map as a guide for different modeling methods for charge transport studies in molecular devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA