Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 598(7879): 111-119, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616062

RESUMO

The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.


Assuntos
Córtex Motor/citologia , Neurônios/classificação , Análise de Célula Única , Animais , Atlas como Assunto , Callithrix/genética , Epigênese Genética , Epigenômica , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Perfilação da Expressão Gênica , Glutamatos/metabolismo , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Pessoa de Meia-Idade , Córtex Motor/anatomia & histologia , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Filogenia , Especificidade da Espécie , Transcriptoma
2.
Nature ; 598(7879): 103-110, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616066

RESUMO

Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain1-3. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas-containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities-is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions4. We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis.


Assuntos
Epigenômica , Perfilação da Expressão Gênica , Córtex Motor/citologia , Neurônios/classificação , Análise de Célula Única , Transcriptoma , Animais , Atlas como Assunto , Conjuntos de Dados como Assunto , Epigênese Genética , Feminino , Masculino , Camundongos , Córtex Motor/anatomia & histologia , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Reprodutibilidade dos Testes
3.
Nucleic Acids Res ; 51(D1): D1075-D1085, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36318260

RESUMO

Scalable technologies to sequence the transcriptomes and epigenomes of single cells are transforming our understanding of cell types and cell states. The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative Cell Census Network (BICCN) is applying these technologies at unprecedented scale to map the cell types in the mammalian brain. In an effort to increase data FAIRness (Findable, Accessible, Interoperable, Reusable), the NIH has established repositories to make data generated by the BICCN and related BRAIN Initiative projects accessible to the broader research community. Here, we describe the Neuroscience Multi-Omic Archive (NeMO Archive; nemoarchive.org), which serves as the primary repository for genomics data from the BRAIN Initiative. Working closely with other BRAIN Initiative researchers, we have organized these data into a continually expanding, curated repository, which contains transcriptomic and epigenomic data from over 50 million brain cells, including single-cell genomic data from all of the major regions of the adult and prenatal human and mouse brains, as well as substantial single-cell genomic data from non-human primates. We make available several tools for accessing these data, including a searchable web portal, a cloud-computing interface for large-scale data processing (implemented on Terra, terra.bio), and a visualization and analysis platform, NeMO Analytics (nemoanalytics.org).


Assuntos
Encéfalo , Bases de Dados Genéticas , Epigenômica , Multiômica , Transcriptoma , Animais , Camundongos , Genômica , Mamíferos , Primatas , Encéfalo/citologia , Encéfalo/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(28): e2122301119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867761

RESUMO

The gastropod mollusk Aplysia is an important model for cellular and molecular neurobiological studies, particularly for investigations of molecular mechanisms of learning and memory. We developed an optimized assembly pipeline to generate an improved Aplysia nervous system transcriptome. This improved transcriptome enabled us to explore the evolution of cognitive capacity at the molecular level. Were there evolutionary expansions of neuronal genes between this relatively simple gastropod Aplysia (20,000 neurons) and Octopus (500 million neurons), the invertebrate with the most elaborate neuronal circuitry and greatest behavioral complexity? Are the tremendous advances in cognitive power in vertebrates explained by expansion of the synaptic proteome that resulted from multiple rounds of whole genome duplication in this clade? Overall, the complement of genes linked to neuronal function is similar between Octopus and Aplysia. As expected, a number of synaptic scaffold proteins have more isoforms in humans than in Aplysia or Octopus. However, several scaffold families present in mollusks and other protostomes are absent in vertebrates, including the Fifes, Lev10s, SOLs, and a NETO family. Thus, whereas vertebrates have more scaffold isoforms from select families, invertebrates have additional scaffold protein families not found in vertebrates. This analysis provides insights into the evolution of the synaptic proteome. Both synaptic proteins and synaptic plasticity evolved gradually, yet the last deuterostome-protostome common ancestor already possessed an elaborate suite of genes associated with synaptic function, and critical for synaptic plasticity.


Assuntos
Aplysia , Evolução Biológica , Cognição , Sinapses , Animais , Aplysia/genética , Aplysia/metabolismo , Plasticidade Neuronal/genética , Neurônios/metabolismo , Isoformas de Proteínas/genética , Proteoma , Sinapses/metabolismo , Transcriptoma
6.
Nature ; 550(7674): 61-66, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28953883

RESUMO

The characterization of baseline microbial and functional diversity in the human microbiome has enabled studies of microbiome-related disease, diversity, biogeography, and molecular function. The National Institutes of Health Human Microbiome Project has provided one of the broadest such characterizations so far. Here we introduce a second wave of data from the study, comprising 1,631 new metagenomes (2,355 total) targeting diverse body sites with multiple time points in 265 individuals. We applied updated profiling and assembly methods to provide new characterizations of microbiome personalization. Strain identification revealed subspecies clades specific to body sites; it also quantified species with phylogenetic diversity under-represented in isolate genomes. Body-wide functional profiling classified pathways into universal, human-enriched, and body site-enriched subsets. Finally, temporal analysis decomposed microbial variation into rapidly variable, moderately variable, and stable subsets. This study furthers our knowledge of baseline human microbial diversity and enables an understanding of personalized microbiome function and dynamics.


Assuntos
Microbiota/fisiologia , Filogenia , Conjuntos de Dados como Assunto , Humanos , Metagenoma/genética , Metagenoma/fisiologia , Microbiota/genética , Anotação de Sequência Molecular , National Institutes of Health (U.S.) , Especificidade de Órgãos , Análise Espaço-Temporal , Fatores de Tempo , Estados Unidos
8.
Nucleic Acids Res ; 49(D1): D734-D742, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33305317

RESUMO

The Human Microbiome Project (HMP) explored microbial communities of the human body in both healthy and disease states. Two phases of the HMP (HMP and iHMP) together generated >48TB of data (public and controlled access) from multiple, varied omics studies of both the microbiome and associated hosts. The Human Microbiome Project Data Coordination Center (HMPDACC) was established to provide a portal to access data and resources produced by the HMP. The HMPDACC provides a unified data repository, multi-faceted search functionality, analysis pipelines and standardized protocols to facilitate community use of HMP data. Recent efforts have been put toward making HMP data more findable, accessible, interoperable and reusable. HMPDACC resources are freely available at www.hmpdacc.org.


Assuntos
Bases de Dados Genéticas , Microbiota , Humanos , Internet , Ferramenta de Busca
9.
BMC Genomics ; 21(1): 279, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245418

RESUMO

BACKGROUND: The apicomplexan parasite Theileria parva causes a livestock disease called East coast fever (ECF), with millions of animals at risk in sub-Saharan East and Southern Africa, the geographic distribution of T. parva. Over a million bovines die each year of ECF, with a tremendous economic burden to pastoralists in endemic countries. Comprehensive, accurate parasite genome annotation can facilitate the discovery of novel chemotherapeutic targets for disease treatment, as well as elucidate the biology of the parasite. However, genome annotation remains a significant challenge because of limitations in the quality and quantity of the data being used to inform the location and function of protein-coding genes and, when RNA data are used, the underlying biological complexity of the processes involved in gene expression. Here, we apply our recently published RNAseq dataset derived from the schizont life-cycle stage of T. parva to update structural and functional gene annotations across the entire nuclear genome. RESULTS: The re-annotation effort lead to evidence-supported updates in over half of all protein-coding sequence (CDS) predictions, including exon changes, gene merges and gene splitting, an increase in average CDS length of approximately 50 base pairs, and the identification of 128 new genes. Among the new genes identified were those involved in N-glycosylation, a process previously thought not to exist in this organism and a potentially new chemotherapeutic target pathway for treating ECF. Alternatively-spliced genes were identified, and antisense and multi-gene family transcription were extensively characterized. CONCLUSIONS: The process of re-annotation led to novel insights into the organization and expression profiles of protein-coding sequences in this parasite, and uncovered a minimal N-glycosylation pathway that changes our current understanding of the evolution of this post-translational modification in apicomplexan parasites.


Assuntos
Anotação de Sequência Molecular/métodos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Theileria parva/genética , Processamento Alternativo , Animais , Redes Reguladoras de Genes , Genoma de Protozoário , Glicosilação , Gado/parasitologia , Análise de Sequência de RNA , Theileria parva/metabolismo
11.
Nucleic Acids Res ; 42(Database issue): D705-10, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24194595

RESUMO

The Aspergillus Genome Database (AspGD; http://www.aspgd.org) is a freely available web-based resource that was designed for Aspergillus researchers and is also a valuable source of information for the entire fungal research community. In addition to being a repository and central point of access to genome, transcriptome and polymorphism data, AspGD hosts a comprehensive comparative genomics toolbox that facilitates the exploration of precomputed orthologs among the 20 currently available Aspergillus genomes. AspGD curators perform gene product annotation based on review of the literature for four key Aspergillus species: Aspergillus nidulans, Aspergillus oryzae, Aspergillus fumigatus and Aspergillus niger. We have iteratively improved the structural annotation of Aspergillus genomes through the analysis of publicly available transcription data, mostly expressed sequenced tags, as described in a previous NAR Database article (Arnaud et al. 2012). In this update, we report substantive structural annotation improvements for A. nidulans, A. oryzae and A. fumigatus genomes based on recently available RNA-Seq data. Over 26 000 loci were updated across these species; although those primarily comprise the addition and extension of untranslated regions (UTRs), the new analysis also enabled over 1000 modifications affecting the coding sequence of genes in each target genome.


Assuntos
Aspergillus/genética , Bases de Dados Genéticas , Genoma Fúngico , Anotação de Sequência Molecular , Perfilação da Expressão Gênica , Genes Fúngicos , Internet , Análise de Sequência de RNA
12.
BMC Genomics ; 15: 738, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25168586

RESUMO

BACKGROUND: Halyomorpha halys (Stål) (Insecta:Hemiptera;Pentatomidae), commonly known as the Brown Marmorated Stink Bug (BMSB), is an invasive pest of the mid-Atlantic region of the United States, causing economically important damage to a wide range of crops. Native to Asia, BMSB was first observed in Allentown, PA, USA, in 1996, and this pest is now well-established throughout the US mid-Atlantic region and beyond. In addition to the serious threat BMSB poses to agriculture, BMSB has become a nuisance to homeowners, invading home gardens and congregating in large numbers in human-made structures, including homes, to overwinter. Despite its significance as an agricultural pest with limited control options, only 100 bp of BMSB sequence data was available in public databases when this project began. RESULTS: Transcriptome sequencing was undertaken to provide a molecular resource to the research community to inform the development of pest control strategies and to provide molecular data for population genetics studies of BMSB. Using normalized, strand-specific libraries, we sequenced pools of all BMSB life stages on the Illumina HiSeq. Trinity was used to assemble 200,000 putative transcripts in >100,000 components. A novel bioinformatic method that analyzed the strand-specificity of the data reduced this to 53,071 putative transcripts from 18,573 components. By integrating multiple other data types, we narrowed this further to 13,211 representative transcripts. CONCLUSIONS: Bacterial endosymbiont genes were identified in this dataset, some of which have a copy number consistent with being lateral gene transfers between endosymbiont genomes and Hemiptera, including ankyrin-repeat related proteins, lysozyme, and mannanase. Such genes and endosymbionts may provide novel targets for BMSB-specific biocontrol. This study demonstrates the utility of strand-specific sequencing in generating shotgun transcriptomes and that rapid sequencing shotgun transcriptomes is possible without the need for extensive inbreeding to generate homozygous lines. Such sequencing can provide a rapid response to pest invasions similar to that already described for disease epidemiology.


Assuntos
Perfilação da Expressão Gênica/métodos , Heterópteros/genética , Proteínas de Insetos/genética , Análise de Sequência de RNA/métodos , Animais , Bactérias/genética , Proteínas de Bactérias/genética , Biologia Computacional/métodos , Feminino , Transferência Genética Horizontal , Heterópteros/microbiologia , Espécies Introduzidas , Masculino , Dados de Sequência Molecular , Filogenia , Simbiose
13.
Nucleic Acids Res ; 40(Database issue): D653-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22080559

RESUMO

The Aspergillus Genome Database (AspGD; http://www.aspgd.org) is a freely available, web-based resource for researchers studying fungi of the genus Aspergillus, which includes organisms of clinical, agricultural and industrial importance. AspGD curators have now completed comprehensive review of the entire published literature about Aspergillus nidulans and Aspergillus fumigatus, and this annotation is provided with streamlined, ortholog-based navigation of the multispecies information. AspGD facilitates comparative genomics by providing a full-featured genomics viewer, as well as matched and standardized sets of genomic information for the sequenced aspergilli. AspGD also provides resources to foster interaction and dissemination of community information and resources. We welcome and encourage feedback at aspergillus-curator@lists.stanford.edu.


Assuntos
Aspergillus/genética , Bases de Dados Genéticas , Genoma Fúngico , Aspergillus fumigatus/genética , Aspergillus nidulans/genética , Genes Fúngicos , Genômica , Anotação de Sequência Molecular
14.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464021

RESUMO

The rising quality and amount of multi-omic data across biomedical science demands that we build innovative solutions to harness their collective discovery potential. From publicly available repositories, we have assembled and curated a compendium of gene-level transcriptomic data focused on mammalian excitatory neurogenesis in the neocortex. This collection is open for exploration by both computational and cell biologists at nemoanalytics.org, and this report forms a demonstration of its utility. Applying our novel structured joint decomposition approach to mouse, macaque and human data from the collection, we define transcriptome dynamics that are conserved across mammalian excitatory neurogenesis and which map onto the genetics of human brain structure and disease. Leveraging additional data within NeMO Analytics via projection methods, we chart the dynamics of these fundamental molecular elements of neurogenesis across developmental time and space and into postnatal life. Reversing the direction of our investigation, we use transcriptomic data from laminar-specific dissection of adult human neocortex to define molecular signatures specific to excitatory neuronal cell types resident in individual layers of the mature neocortex, and trace their emergence across development. We show that while many lineage defining transcription factors are most highly expressed at early fetal ages, the laminar neuronal identities which they drive take years to decades to reach full maturity. Finally, we interrogated data from stem-cell derived cerebral organoid systems demonstrating that many fundamental elements of in vivo development are recapitulated with high-fidelity in vitro, while specific transcriptomic programs in neuronal maturation are absent. We propose these analyses as specific applications of the general approach of combining joint decomposition with large curated collections of analysis-ready multi-omics data matrices focused on particular cell and disease contexts. Importantly, these open environments are accessible to, and must be fueled with emerging data by, cell biologists with and without coding expertise.

15.
Nucleic Acids Res ; 38(Database issue): D420-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19773420

RESUMO

The Aspergillus Genome Database (AspGD) is an online genomics resource for researchers studying the genetics and molecular biology of the Aspergilli. AspGD combines high-quality manual curation of the experimental scientific literature examining the genetics and molecular biology of Aspergilli, cutting-edge comparative genomics approaches to iteratively refine and improve structural gene annotations across multiple Aspergillus species, and web-based research tools for accessing and exploring the data. All of these data are freely available at http://www.aspgd.org. We welcome feedback from users and the research community at aspergillus-curator@genome.stanford.edu.


Assuntos
Aspergillus nidulans/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Genoma Fúngico , Biologia Computacional/tendências , Bases de Dados de Proteínas , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Genética , Armazenamento e Recuperação da Informação/métodos , Internet , Modelos Genéticos , Fenótipo , Estrutura Terciária de Proteína , Software
16.
Nucleic Acids Res ; 38(Database issue): D408-14, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19843611

RESUMO

Pathema (http://pathema.jcvi.org) is one of the eight Bioinformatics Resource Centers (BRCs) funded by the National Institute of Allergy and Infectious Disease (NIAID) designed to serve as a core resource for the bio-defense and infectious disease research community. Pathema strives to support basic research and accelerate scientific progress for understanding, detecting, diagnosing and treating an established set of six target NIAID Category A-C pathogens: Category A priority pathogens; Bacillus anthracis and Clostridium botulinum, and Category B priority pathogens; Burkholderia mallei, Burkholderia pseudomallei, Clostridium perfringens and Entamoeba histolytica. Each target pathogen is represented in one of four distinct clade-specific Pathema web resources and underlying databases developed to target the specific data and analysis needs of each scientific community. All publicly available complete genome projects of phylogenetically related organisms are also represented, providing a comprehensive collection of organisms for comparative analyses. Pathema facilitates the scientific exploration of genomic and related data through its integration with web-based analysis tools, customized to obtain, display, and compute results relevant to ongoing pathogen research. Pathema serves the bio-defense and infectious disease research community by disseminating data resulting from pathogen genome sequencing projects and providing access to the results of inter-genomic comparisons for these organisms.


Assuntos
Infecções Bacterianas/microbiologia , Doenças Transmissíveis/microbiologia , Biologia Computacional/métodos , Bases de Dados Genéticas , Sequência de Aminoácidos , Animais , Infecções Bacterianas/diagnóstico , Biologia Computacional/tendências , Genoma Bacteriano , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Dados de Sequência Molecular , National Institute of Allergy and Infectious Diseases (U.S.) , Homologia de Sequência de Aminoácidos , Software , Estados Unidos
17.
BMC Genomics ; 12: 570, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22111657

RESUMO

BACKGROUND: Pneumonia and myocarditis are the most commonly reported diseases due to Histophilus somni, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in H. somni using traditional methods. Analyses of the genome sequences of several Pasteurellaceae species have provided insights into their biology and evolution. In view of the economic and ecological importance of H. somni, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the Pasteurellaceae. RESULTS: The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the Pasteurellaceae, several H. somni genes that may encode proteins involved in virulence (e.g., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor. CONCLUSIONS: Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two H. somni strains.


Assuntos
Hibridização Genômica Comparativa , Evolução Molecular , Transferência Genética Horizontal , Genes Bacterianos , Pasteurellaceae/genética , Cromossomos Bacterianos , DNA Bacteriano/genética
18.
Bioinformatics ; 26(12): 1488-92, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20413634

RESUMO

MOTIVATION: The growth of sequence data has been accompanied by an increasing need to analyze data on distributed computer clusters. The use of these systems for routine analysis requires scalable and robust software for data management of large datasets. Software is also needed to simplify data management and make large-scale bioinformatics analysis accessible and reproducible to a wide class of target users. RESULTS: We have developed a workflow management system named Ergatis that enables users to build, execute and monitor pipelines for computational analysis of genomics data. Ergatis contains preconfigured components and template pipelines for a number of common bioinformatics tasks such as prokaryotic genome annotation and genome comparisons. Outputs from many of these components can be loaded into a Chado relational database. Ergatis was designed to be accessible to a broad class of users and provides a user friendly, web-based interface. Ergatis supports high-throughput batch processing on distributed compute clusters and has been used for data management in a number of genome annotation and comparative genomics projects. AVAILABILITY: Ergatis is an open-source project and is freely available at http://ergatis.sourceforge.net.


Assuntos
Biologia Computacional/métodos , Internet , Software , Bases de Dados Genéticas , Bases de Dados de Proteínas , Fluxo de Trabalho
19.
PLoS Genet ; 4(4): e1000046, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18404212

RESUMO

We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated "gene dumps" and, perhaps, simultaneously, as "gene factories".


Assuntos
Aspergillus fumigatus/genética , Ilhas Genômicas , Alérgenos/genética , Aspergillus/classificação , Aspergillus/genética , Aspergillus/fisiologia , Aspergillus fumigatus/classificação , Aspergillus fumigatus/patogenicidade , Aspergillus fumigatus/fisiologia , Cromossomos Fúngicos/genética , Eurotiales/classificação , Eurotiales/genética , Eurotiales/fisiologia , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Genoma Fúngico , Humanos , Filogenia , Especificidade da Espécie , Virulência/genética
20.
Cell Rep ; 36(13): 109758, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34592158

RESUMO

Noise-induced hearing loss (NIHL) results from a complex interplay of damage to the sensory cells of the inner ear, dysfunction of its lateral wall, axonal retraction of type 1C spiral ganglion neurons, and activation of the immune response. We use RiboTag and single-cell RNA sequencing to survey the cell-type-specific molecular landscape of the mouse inner ear before and after noise trauma. We identify induction of the transcription factors STAT3 and IRF7 and immune-related genes across all cell-types. Yet, cell-type-specific transcriptomic changes dominate the response. The ATF3/ATF4 stress-response pathway is robustly induced in the type 1A noise-resilient neurons, potassium transport genes are downregulated in the lateral wall, mRNA metabolism genes are downregulated in outer hair cells, and deafness-associated genes are downregulated in most cell types. This transcriptomic resource is available via the Gene Expression Analysis Resource (gEAR; https://umgear.org/NIHL) and provides a blueprint for the rational development of drugs to prevent and treat NIHL.


Assuntos
Orelha Interna/metabolismo , Células Ciliadas Auditivas/metabolismo , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/fisiopatologia , Gânglio Espiral da Cóclea/metabolismo , Animais , Cóclea/metabolismo , Cóclea/fisiopatologia , Orelha Interna/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva Provocada por Ruído/genética , Camundongos , Neurônios/metabolismo , Ruído , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA