Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 212: 111979, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513482

RESUMO

Silicon oxide (SiO2) nanostructures (SiO2NS) are increasingly being incorporated into an array of products, notably in the food, pharmaceutical, medical industries and in water treatment systems. Amorphous SiO2NS have low toxicity, however, due to their great versatility, superficial modifications can be made and these altered structures require toxicological investigation. In this study, SiO2NS were synthetized and amine-functionalized with the molecules (3-aminopropyl)triethoxysilane (APTMS) and 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane (AEAEAPTMS), named SiO2NS@1 and SiO2NS@3, respectively. The bare SiO2NS, SiO2NS@1 and SiO2NS@3 samples were characterized and the influence of the culture medium used in the toxicological assays was also evaluated. The effect of amine functionalization of SiO2NS was investigated through acute and chronic toxicity assays with Daphnia magna. Modifications to ultrastructures of the intestine and eggs of these organisms were observed in TEM and SEM analysis. The toxicity was influenced by the surface modifications and a possible Trojan horse effect was highlighted, particularly in the case of chronic exposure. Exposure to all NSs promoted alterations in the microvilli and mitochondria of the D. magna intestine and some damage to egg cells was also observed. The results demonstrate the importance of carrying out a full characterization of these materials, since surface modifications can enhance their toxic potential.


Assuntos
Daphnia/fisiologia , Nanoestruturas/toxicidade , Dióxido de Silício/toxicidade , Aminas , Animais , Bioensaio , Daphnia/efeitos dos fármacos , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade
2.
Chemosphere ; 224: 237-246, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30822730

RESUMO

Among nanomaterials, zinc oxide (ZnO) is notable for its excellent biocidal properties. In particular, it can be incorporated in mortars to prevent biofouling. However, the morphology of these nanomaterials (NMs) and their impact on the action against biofouling are still unknown. This study aimed to assess how the morphology and surface modification can affect the ecotoxicology of ZnO NMs. The morphologies evaluated were nanoparticles (NPs) and nanorods (NRs), and the ZnO NMs were tested pure and with surface modification through amine functionalization (@AF). The toxic effects of these NMs were evaluated by acute and chronic ecotoxicity tests with the well-established model microcrustacean Daphnia magna. The ZnO NMs were characterized by transmission electron microscopy, X-ray diffraction and infrared spectroscopy. The EC5048h to D. magna indicated higher acute toxicity of ZnO@AF NRs compared to all tested NMs. Regarding the chronic test with D. magna, high toxic effects on reproduction and longevity were observed with ZnO@AF NRs and effects on growth were observed with ZnO NRs. In general, all tested ZnO NMs presented high toxicity when compared to the positive control, and the NRs presented higher toxicity than NPs in all tested parameters, regardless of the form tested (pure or with surface modification). Additionally, the pathways of ecotoxicity of the tested ZnO NMs was found to be related to combined factors of Zn ion release, effective diameter of particles and NM internalization in the organism.


Assuntos
Daphnia/efeitos dos fármacos , Ecotoxicologia/métodos , Nanoestruturas/toxicidade , Óxido de Zinco/toxicidade , Animais , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Nanoestruturas/ultraestrutura , Nanotubos/toxicidade , Nanotubos/ultraestrutura , Propriedades de Superfície , Testes de Toxicidade , Óxido de Zinco/química
3.
Environ Toxicol Chem ; 38(10): 2101-2110, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31233230

RESUMO

There are few studies on nanoplastic that propose quantification of the amount ingested combined with evaluation of the toxic effects on aquatic organisms. We propose 2 methods to quantify the amount of polystyrene nanoplastic (PSNP) ingested by Daphnia magna: fluorescence intensity, where a fluorescent monomer (F) is added to the PSNP and quantified through fluorescence light microscopy, and total aluminum quantification, where PSNP is synthesized with Al2 O3 metal-core nanoparticles and used for quantification of the nanoplastic ingested by the organism Daphnia magna using inductively coupled plasma-mass spectrometry. In addition, the PSNP was functionalized with palmitic acid to simulate the environmental conditions leading to biological and chemical transformations. Acute and chronic toxicity tests were performed with fluorescent PSNP (PSNP/F) and palmitic acid-functionalized PSNP/F (PSNP/F-PA). The ingestion quantified was higher by factors of 2.8 and 3.0 for PSNP/F-PA and 1.9 and 1.7 for PSNP/F applying the fluorescence intensity and total Al quantifying methods, respectively, when compared to PSNP. These results are consistent with the data obtained in the toxicity tests, which showed an approximately 3 times increase in the adverse effect of PSNP/F-PA on the mobility and reproduction of the organisms. Thus, the strong inhibition of D. magna reproduction caused by PSNP/F-PA in the chronic toxicity tests could be associated with a greater amount of this nanoplastic being ingested by the organisms. Environ Toxicol Chem 2019;38:2101-2110. © 2019 SETAC.


Assuntos
Daphnia/química , Metais/química , Nanopartículas/toxicidade , Poluentes Químicos da Água/análise , Óxido de Alumínio/química , Animais , Daphnia/efeitos dos fármacos , Daphnia/crescimento & desenvolvimento , Espectrometria de Massas , Nanopartículas/química , Imagem Óptica , Poliestirenos/química , Reprodução/efeitos dos fármacos , Testes de Toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA