Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Biochem Biophys Res Commun ; 500(2): 261-267, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29653104

RESUMO

Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Biblioteca Gênica , Malária/metabolismo , Malária/parasitologia , Parasitos/metabolismo , Sequência de Aminoácidos , Animais , Biotinilação , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Proteínas de Ligação ao Cálcio/química , Quelantes/farmacologia , Camundongos Endogâmicos BALB C , Plasmodium yoelii/metabolismo , Mapas de Interação de Proteínas
2.
Malar J ; 17(1): 466, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545367

RESUMO

BACKGROUND: For the success of the malaria control and eradication programme it is essential to reduce parasite transmission by mosquito vectors. In the midguts of mosquitoes fed with parasite-infected blood, sexual-stage parasites fertilize to develop into motile ookinetes that traverse midgut epithelial cells and reside adjacent the basal lamina. Therefore, the ookinete is a promising target of transmission-blocking vaccines to break the parasite lifecycle in mosquito vectors. However, the molecular mechanisms of ookinete formation and invasion of epithelial cells have not been fully elucidated. A unique structure called the crystalloid body has been identified in the ookinete cytoplasm by electron microscopy, but its biological functions remain unclear. METHODS: A recombinant protein of a novel molecule, designated as crystalloid body specific PH domain-containing protein of Plasmodium yoelii (PyCryPH), was synthesized using a wheat germ cell-free system. Specific rabbit antibodies against PyCryPH were obtained to characterize the expression and localization of PyCryPH during sexual-stage parasite development. In addition, PyCryPH knockout parasites were generated by targeted gene disruption to examine PyCryPH function in mosquito-stage parasite development. RESULTS: Western blot and immunofluorescence assays using specific antibodies showed that PyCryPH is specifically expressed in zygotes and ookinetes. By immunoelectron microscopy it was demonstrated that PyCryPH is localized within crystalloid bodies. Parasites with a disrupted PyCryPH gene developed normally into ookinetes and formed oocysts on the basal lamina of midguts. In addition, the number of sporozoites residing in salivary glands was comparable to that of wild-type parasites. CONCLUSIONS: CryPH, containing a signal peptide and PH domain, is predominantly expressed in zygotes and ookinetes and is localized to crystalloid bodies in P. yoelii. CryPH accumulates in vesicle-like structures prior to the appearance of typical crystalloid bodies. Unlike other known crystalloid body localized proteins, CryPH does not appear to have a multiple domain architecture characteristic of the LAP/CCp family proteins. Although CryPH is highly conserved among Plasmodium, Babesia, Theileria, and Cryptosporidium, PyCryPH is dispensable for the development of invasive ookinetes and sporozoites in mosquito bodies.


Assuntos
Estágios do Ciclo de Vida/fisiologia , Plasmodium yoelii/química , Domínios de Homologia à Plecstrina , Proteínas de Protozoários/química , Animais , Anticorpos Antiprotozoários , Sistema Livre de Células , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas , Plasmodium yoelii/genética , Plasmodium yoelii/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
3.
Biomolecules ; 14(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38254700

RESUMO

Extensive control efforts have significantly reduced malaria cases and deaths over the past two decades, but in recent years, coupled with the COVID-19 pandemic, success has stalled. The WHO has urged the implementation of a number of interventions, including vaccines. The modestly effective RTS,S/AS01 pre-erythrocytic vaccine has been recommended by the WHO for use in sub-Saharan Africa against Plasmodium falciparum in children residing in moderate to high malaria transmission regions. A second pre-erythrocytic vaccine, R21/Matrix-M, was also recommended by the WHO on 3 October 2023. However, the paucity and limitations of pre-erythrocytic vaccines highlight the need for asexual blood-stage malaria vaccines that prevent disease caused by blood-stage parasites. Few asexual blood-stage vaccine candidates have reached phase 2 clinical development, and the challenges in terms of their efficacy include antigen polymorphisms and low immunogenicity in humans. This review summarizes the history and progress of asexual blood-stage malaria vaccine development, highlighting the need for novel candidate vaccine antigens/molecules.


Assuntos
Vacinas Antimaláricas , Malária , Criança , Humanos , Plasmodium falciparum , Pandemias , Eritrócitos
4.
Yonago Acta Med ; 66(2): 246-256, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37229380

RESUMO

Background: Japanese spotted fever (JSF) is a tick-borne bacterial febrile disease caused by Rickettsia japonica characterized by fever, rash, and occasional death. The number of patients in Japan and the Tottori Prefecture has been increasing over the past 20 years. Most cases were found in Eastern Tottori; however, the distribution of patients has expanded to the Central and Western regions. Ticks carried by wild animals may be the cause, but the prevalence of R. japonica in ticks has not yet been analyzed. Methods: Ticks were collected by flagging-dragging from 16 sites in Tottori, Japan. The ticks were morphologically classified and DNA was extracted. The 17-kDa antigen gene was amplified using nested PCR. PCR amplicons from ticks and JSF patients were sequenced and phylogenetically compared. Results: In total, 177 ticks were collected and identified as Haemahysalis, Ixodes, Amblyomma, and Dermcentor. The Spotted Fever Group Rickettsia (SFGR) was detected in Haemahysalis and Amblyomma spp. using PCR, with positivity rates of 36.8% and 33.3%, respectively. DNA sequencing and phylogenetic analysis revealed that positive ticks harbored R. japonica, P. raoultii, and other Rickettsiae species; however, the patient's samples were restricted to R. japonica. Similar to the incidence of JSF, the rate of R. japonica-positive ticks was higher in the Eastern region; however, R. japonica-positive ticks were also detected in the Western region. Conclusion: R. japonica sequences had been found in ticks collected in Tottori Prefecture. Ticks harboring R. japonica were found in the Eastern and Western parts of Tottori Prefecture and the sequences were identical to the human cases. Only the R. japonica sequence has been detected in patients with spotted fever symptoms, even though ticks were harboring various SFGRs.

5.
Parasitol Int ; 95: 102742, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36870444

RESUMO

Parasitic helminths modify host immune reactions to promote long-term parasitism. We previously purified a glycoprotein, plerocercoid-immunosuppressive factor (P-ISF), from the excretory/secretory products of Spirometra erinaceieuropaei plerocercoids and reported its cDNA and genomic DNA sequences. In this study, we isolated extracellular vesicles (EVs) from the excretory/secretory products of S. erinaceieuropaei plerocercoids and found that they suppressed the production of nitric oxide and the gene expression of tumor necrosis factor-α, interleukin-1ß, and interleukin-6 in lipopolysaccharide-stimulated macrophages. EVs are membrane-bound vesicles 50-250 nm in diameter and are localized in the whole bodies of plerocercoids. EVs from plerocercoids encapsulate a variety of unidentified proteins and microRNAs (miRNAs), which are non-coding RNAs that play essential roles in post-transcriptional gene regulation. The miRNAs of the EVs were analyzed, and 334,137 sequencing reads were mapped to the genomes of other organisms. A total of 26 different miRNA families were identified, including miR-71, miR-10-5p, miR-223, and let-7-5p, which have been reported to have immunosuppressive effects. We confirmed that P-ISF was present in the supernatant but not in the EVs by western blotting with an anti-P-ISF antibody. These results suggest that S. erinaceieuropaei plerocercoids suppress host immunity by releasing P-ISF and EVs.


Assuntos
Vesículas Extracelulares , MicroRNAs , Spirometra , Humanos , Animais , Camundongos , Spirometra/genética , Macrófagos , Glicoproteínas , MicroRNAs/genética , MicroRNAs/metabolismo
6.
Front Cell Infect Microbiol ; 13: 1197126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457963

RESUMO

Plasmodium species cause malaria, and in the instance of Plasmodium falciparum is responsible for a societal burden of over 600,000 deaths annually. The symptoms and pathology of malaria are due to intraerythocytic parasites. Erythrocyte invasion is mediated by the parasite merozoite stage, and is accompanied by the formation of a parasitophorous vacuolar membrane (PVM), within which the parasite develops. The merozoite apical rhoptry organelle contains various proteins that contribute to erythrocyte attachment and invasion. RON3, a rhoptry bulb membrane protein, undergoes protein processing and is discharged into the PVM during invasion. RON3-deficient parasites fail to develop beyond the intraerythrocytic ring stage, and protein export into erythrocytes by the Plasmodium translocon of exported proteins (PTEX) apparatus is abrogated, as well as glucose uptake into parasites. It is known that truncated N- and C-terminal RON3 fragments are present in rhoptries, but it is unclear which RON3 fragments contribute to protein export by PTEX and glucose uptake through the PVM. To investigate and distinguish the roles of the RON3 C-terminal fragment at distinct developmental stages, we used a C-terminus tag for conditional and post-translational control. We demonstrated that RON3 is essential for blood-stage parasite survival, and knockdown of RON3 C-terminal fragment expression from the early schizont stage induces a defect in erythrocyte invasion and the subsequent development of ring stage parasites. Protein processing of full-length RON3 was partially inhibited in the schizont stage, and the RON3 C-terminal fragment was abolished in subsequent ring-stage parasites compared to the RON3 N-terminal fragment. Protein export and glucose uptake were abrogated specifically in the late ring stage. Plasmodial surface anion channel (PSAC) activity was partially retained, facilitating small molecule traffic across the erythrocyte membrane. The knockdown of the RON3 C-terminal fragment after erythrocyte invasion did not alter parasite growth. These data suggest that the RON3 C-terminal fragment participates in erythrocyte invasion and serves an essential role in the progression of ring-stage parasite growth by the establishment of the nutrient-permeable channel in the PVM, accompanying the transport of ring-stage parasite protein from the plasma membrane to the PVM.


Assuntos
Malária , Parasitos , Plasmodium , Animais , Plasmodium falciparum/genética , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transporte Proteico , Eritrócitos/parasitologia , Plasmodium/metabolismo , Glucose/metabolismo , Proliferação de Células
7.
Biomolecules ; 13(3)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36979393

RESUMO

Plasmodium malaria parasites use erythrocyte-binding-like (EBL) ligands to invade erythrocytes in their vertebrate host. EBLs are released from micronemes, which are secretory organelles located at the merozoite apical end and bind to erythrocyte surface receptors. Because of their essential nature, EBLs have been studied as vaccine candidates, such as the Plasmodium vivax Duffy binding protein. Previously, we showed through using the rodent malaria parasite Plasmodium yoelii that a single amino acid substitution within the EBL C-terminal Cys-rich domain (region 6) caused mislocalization of this molecule and resulted in alteration of the infection course and virulence between the non-lethal 17X and lethal 17XL strains. In the present study, we generated a panel of transgenic P. yoelii lines in which seven of the eight conserved Cys residues in EBL region 6 were independently substituted to Ala residues to observe the consequence of these substitutions with respect to EBL localization, the infection course, and virulence. Five out of seven transgenic lines showed EBL mislocalizations and higher parasitemias. Among them, three showed increased virulence, whereas the other two did not kill the infected mice. The remaining two transgenic lines showed low parasitemias similar to their parental 17X strain, and their EBL localizations did not change. The results indicate the importance of Cys residues in EBL region 6 for EBL localization, parasite infection course, and virulence and suggest an association between EBL localization and the parasite infection course.


Assuntos
Malária , Plasmodium yoelii , Animais , Camundongos , Ligantes , Cisteína/metabolismo , Plasmodium yoelii/genética , Plasmodium yoelii/metabolismo , Parasitemia , Sequência de Aminoácidos , Proteínas de Protozoários/metabolismo , Moléculas de Adesão Celular/metabolismo , Malária/metabolismo , Eritrócitos/metabolismo
8.
Cell Immunol ; 276(1-2): 101-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22608126

RESUMO

T helper (Th)2 polarized immune responses are characteristically dominant in helminth infections. The gene expression of interferon (IFN)-γ-inducible protein 10 (IP-10/CXCL10), which promotes Th1 responses, in mouse macrophages stimulated with lipopolysaccharide (LPS) and/or IFN-γ was suppressed by excretory/secretory (ES) products of Spirometra erinaceieuropaei plerocercoids. ES products suppressed LPS- and/or IFN-γ-induced transcriptional activities of a luciferase reporter gene under the control of a 243-bp fragment of the IP-10 gene promoter/enhancer, which contains an IFN-stimulated response element (ISRE) and two κB elements. Consistent with this result, ES products inhibited ISRE-dependent heterologous promoter activities and LPS- or IFN-γ-induced ISRE-binding activity. ES products also suppressed LPS-induced IFN-ß gene expression. Furthermore, ES products suppressed nuclear factor (NF)-κB RelA (p65)-dependent transcriptional activity, whereas ES products had no effect on the κB-binding activity. These results suggest that ES products suppress the IP-10 gene expression by inhibiting the ISRE- and RelA-dependent transcriptional activities in mouse macrophages.


Assuntos
Quimiocina CXCL10/imunologia , Interferon gama/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Spirometra/imunologia , Animais , Linhagem Celular , Quimiocina CXCL10/genética , Regulação para Baixo , Camundongos , Fosforilação , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Elementos de Resposta , Fator de Transcrição STAT1/imunologia
9.
Proc Natl Acad Sci U S A ; 106(17): 7167-72, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19346470

RESUMO

The major virulence determinant of the rodent malaria parasite, Plasmodium yoelii, has remained unresolved since the discovery of the lethal line in the 1970s. Because virulence in this parasite correlates with the ability to invade different types of erythrocytes, we evaluated the potential role of the parasite erythrocyte binding ligand, PyEBL. We found 1 amino acid substitution in a domain responsible for intracellular trafficking between the lethal and nonlethal parasite lines and, furthermore, that the intracellular localization of PyEBL was distinct between these lines. Genetic modification showed that this substitution was responsible not only for PyEBL localization but also the erythrocyte-type invasion preference of the parasite and subsequently its virulence in mice. This previously unrecognized mechanism for altering an invasion phenotype indicates that subtle alterations of a malaria parasite ligand can dramatically affect host-pathogen interactions and malaria virulence.


Assuntos
Aminoácidos/metabolismo , Eritrócitos/metabolismo , Plasmodium yoelii/metabolismo , Plasmodium yoelii/patogenicidade , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Aminoácidos/genética , Animais , Ligantes , Camundongos , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Plasmodium yoelii/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Virulência
10.
Infect Immun ; 79(11): 4523-32, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21896773

RESUMO

One of the solutions for reducing the global mortality and morbidity due to malaria is multivalent vaccines comprising antigens of several life cycle stages of the malarial parasite. Hence, there is a need for supplementing the current set of malaria vaccine candidate antigens. Here, we aimed to characterize glycosylphosphatidylinositol (GPI)-anchored micronemal antigen (GAMA) encoded by the PF08_0008 gene in Plasmodium falciparum. Antibodies were raised against recombinant GAMA synthesized by using a wheat germ cell-free system. Immunoelectron microscopy demonstrated for the first time that GAMA is a microneme protein of the merozoite. Erythrocyte binding assays revealed that GAMA possesses an erythrocyte binding epitope in the C-terminal region and it binds a nonsialylated protein receptor on human erythrocytes. Growth inhibition assays revealed that anti-GAMA antibodies can inhibit P. falciparum invasion in a dose-dependent manner and GAMA plays a role in the sialic acid (SA)-independent invasion pathway. Anti-GAMA antibodies in combination with anti-erythrocyte binding antigen 175 exhibited a significantly higher level of invasion inhibition, supporting the rationale that targeting of both SA-dependent and SA-independent ligands/pathways is better than targeting either of them alone. Human sera collected from areas of malaria endemicity in Mali and Thailand recognized GAMA. Since GAMA in P. falciparum is refractory to gene knockout attempts, it is essential to parasite invasion. Overall, our study indicates that GAMA is a novel blood-stage vaccine candidate antigen.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Merozoítos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários , Sistema Livre de Células , Eritrócitos/citologia , Eritrócitos/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/metabolismo , Microscopia Imunoeletrônica , Neuraminidase , Plasmodium falciparum/genética , Ligação Proteica , Transporte Proteico , Proteínas de Protozoários/genética
11.
Yonago Acta Med ; 64(1): 80-91, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33642906

RESUMO

BACKGROUND: In order to find out the factors associated with the large disparities in COVID-19 mortality rates by country, we conducted an ecological study by linking existing statistics. In Japan, a large variation was observed in between geographical areas when assessing mortality. We performed a regional correlation analysis to find factors related to regional mortality. METHODS: This study design was an ecologic study. A multiple regression analysis was performed with COVID-19 mortality rates of different countries as the dependent variable together with various health care and economic factors. We calculated the cumulative mortality rate as of June 30, 2020. For the regional correlation analysis of Japan, 47 prefectures were divided into nine regions. The factors examined were health care and tourism. Data for 33 Organization for Economic Co-operation and Development (OECD) countries were analyzed. In Japan's regional analysis, the whole country was classified into nine regions. RESULTS: Factors related to mortality were the incidence of Kawasaki disease (KD), number of computed tomographies (CTs), and alcohol consumption. Mortality was low in countries with high incidence of KD and high number of CTs, as well as in countries with high alcohol consumption. In European countries, high smoking prevalence and a high Gini coefficient were positively related to high mortality. According to a regional analysis in Japan, mortality was related to proportion of population in the densely inhabited districts, the number of foreign visitors per capita, and the number of Chinese visitors per capita. CONCLUSION: Low mortality in East Asia was associated with specific disease morbidity (KD), alcohol consumption, and CT numbers. It was suggested that the mortality gap in Japan was related to the number of foreign tourists and the proportion of population in the densely inhabited districts.

12.
Front Cell Infect Microbiol ; 11: 656620, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937099

RESUMO

Erythrocyte recognition and invasion is critical for the intra-erythrocytic development of Plasmodium spp. parasites. The multistep invasion process involves specific interactions between parasite ligands and erythrocyte receptors. Erythrocyte-binding-like (EBL) proteins, type I integral transmembrane proteins released from the merozoite micronemes, are known to play an important role in the initiation and formation of tight junctions between the apical end of the merozoite and the erythrocyte surface. In Plasmodium yoelii EBL (PyEBL), a single amino acid substitution in the putative Duffy binding domain dramatically changes parasite growth rate and virulence. This suggests that PyEBL is important for modulating the virulence of P. yoelii parasites. Based on these observations, we sought to elucidate the receptor of PyEBL that mediates its role as an invasion ligand. Using the eukaryotic wheat germ cell-free system, we systematically developed and screened a library of mouse erythrocyte proteins against native PyEBL using AlphaScreen technology. We report that PyEBL specifically interacts with basigin, an erythrocyte surface protein. We further confirmed that the N-terminal cysteine-rich Duffy binding-like region (EBL region 2), is responsible for the interaction, and that the binding is not affected by the C351Y mutation, which was previously shown to modulate virulence of P. yoelii. The identification of basigin as the putative PyEBL receptor offers new insights into the role of this molecule and provides an important base for in-depth studies towards developing novel interventions against malaria.


Assuntos
Plasmodium yoelii , Animais , Antígenos de Protozoários/metabolismo , Basigina , Eritrócitos , Proteínas de Membrana , Camundongos , Plasmodium falciparum , Plasmodium yoelii/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo
13.
J Psychiatr Res ; 140: 39-44, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34090102

RESUMO

We aimed to observe the changes in suicide rates after the Great East Japan Earthquake and during the coronavirus (COVID-19) pandemic, as typical cases of social crises, in Japan. A descriptive epidemiological study was conducted using data on the number of deaths by suicide published by the National Police Agency. The suicide rate ratio during the crisis-the monthly suicide mortality rate in the year of the crisis divided by the average suicide mortality rate in the three years before the crisis-was used as the indicator. After the earthquake, in March 2011 the suicide rate was 18% lower than the average mortality rate for the previous three years. However, it increased by 18% in May and 8% in June; increased mortality was observed among women. The suicide rate began to decline after October 2011. During the COVID-19 pandemic, the suicide rate decreased from February to June 2020. The declines in April and May were significant at 20% and 18%, respectively. From July onwards, the suicide rate of women began to rise, and from October, the overall suicide also began to increase. The rise in female suicide rates was significant, especially in October, with an increase of 70%. Thus, during these crises, suicide rates fell temporarily but then rose, especially among women. The period of increase in suicide rates was longer during the COVID-19 pandemic than after the earthquake. Therefore, there is an urgent need to promote measures for suicide prevention currently, and during a future crisis.


Assuntos
COVID-19 , Terremotos , Suicídio , Feminino , Humanos , Japão/epidemiologia , Pandemias , SARS-CoV-2
14.
Yonago Acta Med ; 63(1): 34-41, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32158331

RESUMO

BACKGROUND: Trichinellosis is a serious zoonosis with a worldwide distribution. Fecund adult worms in the intestine release newborn larvae (NBL) that enter the general circulation from 4 days post infection (dpi). Alternatively activated macrophages in the peritoneal cavities and the diaphragms in Trichinella spiralis infected mice have been reported. However, a role of newborn larvae is poorly understood. METHODS: The total numbers of peritoneal macrophages in mice infected with 500 muscle-stage larvae were counted during early infection and then total RNA was extracted. Peritoneal macrophages from uninfected C57BL/6 mice were incubated with IL-4 or LPS as a control, or co-cultured with live NBL, and peritoneal macrophages were obtained from mice injected with live or frozen dead NBL into peritoneal cavity. Total RNA was extracted from these macrophages. Two types of gene expression, classical and alternative activation, were examined in the macrophages and diaphragms of the infected mice using semi-quantitative reverse transcription-PCR. RESULTS: The number of peritoneal macrophages in T. spiralis infected mice increased significantly. mRNA peak expression of alternative activation markers, Ym1 and arginase-1 (Arg1), was confirmed in the peritoneal macrophages and in diaphragm of mice around 15 dpi, while mRNA expression of classical activation markers, TNFα, IP-10, and iNOS was not detected. Injection of live NBL into the peritoneal cavities induced mRNA expression of Ym1 and Arg1 in the peritoneal macrophages of mice 9 dpi. However, dead NBL did not induce such gene expression. Alternative activation was not detected in the peritoneal macrophages co-cultured with NBL in vitro. CONCLUSION: Gene expression of alternative activation makers, Ym1 and Arg1, was confirmed in the peritoneal macrophages and diaphragms of mice infected with T. spiralis. However, gene expression of classical activation markers was not detected. Live NBL induced an alternative activation of peritoneal macrophages in vivo, but not in vitro.

15.
Front Cell Infect Microbiol ; 10: 605367, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33537242

RESUMO

Malaria causes a half a million deaths annually. The parasite intraerythrocytic lifecycle in the human bloodstream is the major cause of morbidity and mortality. Apical organelles of merozoite stage parasites are involved in the invasion of erythrocytes. A limited number of apical organellar proteins have been identified and characterized for their roles during erythrocyte invasion or subsequent intraerythrocytic parasite development. To expand the repertoire of identified apical organellar proteins we generated a panel of monoclonal antibodies against Plasmodium falciparum schizont-rich parasites and screened the antibodies using immunofluorescence assays. Out of 164 hybridoma lines, 12 clones produced monoclonal antibodies yielding punctate immunofluorescence staining patterns in individual merozoites in late schizonts, suggesting recognition of merozoite apical organelles. Five of the monoclonal antibodies were used to immuno-affinity purify their target antigens and these antigens were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Two known apical organelle protein complexes were identified, the high-molecular mass rhoptry protein complex (PfRhopH1/Clags, PfRhopH2, and PfRhopH3) and the low-molecular mass rhoptry protein complex (rhoptry-associated proteins complex, PfRAP1, and PfRAP2). A novel complex was additionally identified by immunoprecipitation, composed of rhoptry-associated membrane antigen (PfRAMA) and rhoptry neck protein 3 (PfRON3) of P. falciparum. We further identified a region spanning amino acids Q221-E481 within the PfRAMA that may associate with PfRON3 in immature schizonts. Further investigation will be required as to whether PfRAMA and PfRON3 interact directly or indirectly.


Assuntos
Merozoítos , Plasmodium falciparum , Animais , Antígenos de Protozoários , Cromatografia Líquida , Eritrócitos , Humanos , Proteínas de Protozoários/genética , Espectrometria de Massas em Tandem
16.
Parasitol Int ; 76: 102062, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31978597

RESUMO

A platyhelminth, Spirometra erinaceieuropaei, belonging to the class Cestoda, causes human sparganosis, and infection with its larva results in subtle inflammation in the body of its host. We previously reported the purification of a glycoprotein, plerocercoid-immunosuppressive factor (P-ISF) from the excretory/secretory products of S. erinaceieuropaei plerocercoids that may be involved in immuno-modification. We determined the sequence of P-ISF from the N-terminal and the internal 10 amino acids of P-ISF using degenerate PCR and 5'- and 3'-RACE methods. The putative gene encoding P-ISF was 1443 bp long and the gene contained 10 exons and 9 introns in a genomic DNA of size 5205 bp. P-ISF consists of 480 amino acids including the N-terminal signal peptide sequence, and has two unknown domains,-cestoda cysteine-rich domains (CCDs) and a fibronectin type III domain between the two CCDs. All cysteine residues were conserved in the two CCDs, which shared 62% amino acid identities. Homologous analysis revealed that the CCDs were homologous with an unknown protein of Diphyllobothrium latum. To produce specific antibodies, we expressed recombinant P-ISF (rP-ISF) using wheat germ protein synthetic system. P-ISF was localized in the sub-cutaneous tissues and the parenchymal tissues of plerocercoids. Transcription of P-ISF was detected only in plerocercoid stage, but not in adult stage. Western blotting also showed a band in plerocercoide stage but not in adult. The rP-ISF did not suppress nitrite production in RAW 264.7 cells stimulated with LPS, and this might be due to lack of carbohydrate chains in the recombinant protein.


Assuntos
Glicoproteínas/genética , Proteínas de Helminto/genética , Spirometra/genética , Animais , Clonagem Molecular , Cisteína/análise , Cisteína/genética , Feminino , Fibronectinas/genética , Genoma Helmíntico , Camundongos , Camundongos Endogâmicos C57BL , Sinais Direcionadores de Proteínas , Células RAW 264.7 , Proteínas Recombinantes/genética , Organismos Livres de Patógenos Específicos
17.
Parasitol Int ; 58(1): 29-35, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18952195

RESUMO

Erythrocyte invasion is an essential step in the establishment of host infection by malaria parasites, and is a major target of intervention strategies that attempt to control the disease. Recent proteome analysis of the closely-related apicomplexan parasite, Toxoplasma gondii, revealed a panel of novel proteins (RONs) located at the neck portion of the rhoptries. Three of these proteins, RON2, RON4, and RON5 have been shown to form a complex with the microneme protein Apical Membrane Protein 1 (AMA1). This complex, termed the Moving Junction complex, localizes at the interface of the parasite and the host cell during the invasion process. Here we characterized a RON2 ortholog in Plasmodium falciparum. PfRON2 transcription peaked at the mature schizont stage and was expressed at the neck portion of the rhoptry in the merozoite. Co-immunoprecipitation of PfRON2, PfRON4 and PfAMA1 indicated that the complex formation is conserved between T. gondii and P. falciparum, suggesting that co-operative function of the rhoptry and microneme proteins is a common mechanism in apicomplexan parasites during host cell invasion. PfRON2 possesses a region displaying homology with the rhoptry body protein PfRhopH1/Clag, a component of the RhopH complex. However, here we present co-immunoprecipitation studies which suggest that PfRON2 is not a component of the RhopH complex and has an independent role. Nucleotide polymorphism analysis suggested that PfRON2 was under diversifying selective pressure. This evidence suggests that RON2 appears to have a fundamental role in host cell invasion by apicomplexan parasites, and is a potential target for malaria intervention strategies.


Assuntos
Antígenos de Protozoários/metabolismo , Eritrócitos/parasitologia , Proteínas de Membrana/metabolismo , Merozoítos/metabolismo , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Reação em Cadeia da Polimerase/métodos , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Transcrição Gênica
18.
Infect Immun ; 76(4): 1702-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18268027

RESUMO

One of the major bottlenecks in malaria research has been the difficulty in recombinant protein expression. Here, we report the application of the wheat germ cell-free system for the successful production of malaria proteins. For proof of principle, the Pfs25, PfCSP, and PfAMA1 proteins were chosen. These genes contain very high A/T sequences and are also difficult to express as recombinant proteins. In our wheat germ cell-free system, native and codon-optimized versions of the Pfs25 genes produced equal amounts of proteins. PfCSP and PfAMA1 genes without any codon optimization were also expressed. The products were soluble, with yields between 50 and 200 mug/ml of the translation mixture, indicating that the cell-free system can be used to produce malaria proteins without any prior optimization of their biased codon usage. Biochemical and immunocytochemical analyses of antibodies raised in mice against each protein revealed that every antibody retained its high specificity to the parasite protein in question. The development of parasites in mosquitoes fed patient blood carrying Plasmodium falciparum gametocytes and supplemented with our mouse anti-Pfs25 sera was strongly inhibited, indicating that both Pfs25-3D7/WG and Pfs25-TBV/WG retained their immunogenicity. Lastly, we carried out a parallel expression assay of proteins of blood-stage P. falciparum. The PCR products of 124 P. falciparum genes chosen from the available database were used directly in a small-scale format of transcription and translation reactions. Autoradiogram testing revealed the production of 93 proteins. The application of this new cell-free system-based protocol for the discovery of malaria vaccine candidates will be discussed.


Assuntos
Sistema Livre de Células/química , Vacinas Antimaláricas , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/química , Proteínas Recombinantes , Triticum , Animais , Antígenos de Protozoários , Culicidae , Humanos , Camundongos , Biossíntese de Proteínas , Vacinas Sintéticas
19.
Mol Biochem Parasitol ; 158(1): 11-21, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18155305

RESUMO

A complex of high-molecular-mass proteins (PfRhopH) of the human malaria parasite Plasmodium falciparum induces host protective immunity and therefore is a candidate for vaccine development. Understanding the level of polymorphism and the evolutionary processes is important for advancements in both vaccine design and knowledge of the evolution of cell invasion in this parasite. In the present study, we sequenced the entire open reading frames of seven genes encoding the proteins of the PfRhopH complex (rhoph2, rhoph3, and five rhoph1/clag gene paralogs). We found that four rhoph1/clag genes (clag2, 3.1, 3.2, and 8) were highly polymorphic. Amino acid substitutions and indels are predominantly clustered around amino acid positions 1000-1200 of these four rhoph1/clag genes. An excess of nonsynonymous substitutions over synonymous substitutions was detected for clag8 and 9, indicating positive selection. The McDonald-Kreitman test with a Plasmodium reichenowi orthologous sequence also supports positive selection on clag8. Based on the ratio of interspecific genetic distance to intraspecific distance, the time to the most recent common ancestor of the clag2 and 8 polymorphisms was estimated to be 1.89 and 0.87 million years ago, respectively, assuming divergence of P. falciparum and P. reichenowi 6 million years ago. In addition to a copy number polymorphism, gene conversion events were detected for the rhoph1/clag genes on chromosome 3, which likely play a role in increasing the diversity of each locus. Our results indicate that a high diversity of the PfRhopH1/Clag multigene family is maintained by diversifying selection forces over a considerably long period.


Assuntos
Evolução Molecular , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Sequência de Bases , DNA de Protozoário/química , DNA de Protozoário/genética , Conversão Gênica , Dosagem de Genes , Mutação INDEL , Dados de Sequência Molecular , Filogenia , Seleção Genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
20.
Mol Biochem Parasitol ; 159(2): 142-5, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18417228

RESUMO

To investigate the physiologic role of cytosolic 2-Cys peroxiredoxin of Plasmodium berghei (PbTPx-1), we infected the vector mosquito Anopheles stephensi with a parasite carrying a targeted knockout of pbtpx-1 (Prx-KO). The number of Prx-KO midgut oocysts at 14-15 days post-feeding (pf) was comparable to that of the parent strain (WT); however, the numbers of sporozoites that formed in midgut oocysts and accumulated in the salivary gland of Prx-KO-infected mosquitoes by 21 days pf were decreased to 10-20% and 3-10%, respectively, of those values in WT-infected mosquitoes. A higher frequency of DNA strand breaks was detected in Prx-KO oocysts than in WT oocysts. Sporozoites carrying the targeted disruption had reduced infectivity in mice; however, the knockout did not affect the ability of the sporozoite to reach the liver parenchyma and initiate exo-erythrocytic form (EEF) development. TPx-1 may be involved in development during exponentially multiplying stages, such as sporozoites and EEF.


Assuntos
Culicidae/parasitologia , Malária/parasitologia , Peroxirredoxinas/fisiologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/patogenicidade , Proteínas de Protozoários/fisiologia , Animais , Quebras de DNA , DNA de Protozoário/genética , Trato Gastrointestinal/química , Trato Gastrointestinal/parasitologia , Deleção de Genes , Fígado/parasitologia , Camundongos , Mutagênese Insercional , Contagem de Ovos de Parasitas , Peroxirredoxinas/genética , Plasmodium berghei/enzimologia , Proteínas de Protozoários/genética , Glândulas Salivares/parasitologia , Esporozoítos/enzimologia , Esporozoítos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA