Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; : e5157, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589764

RESUMO

Cellular senescence is characterized by stable cell cycle arrest. Senescent cells exhibit a senescence-associated secretory phenotype that can promote tumor progression. The aim of our study was to identify specific nuclear magnetic resonance (NMR) spectroscopy-based markers of cancer cell senescence. For metabolic studies, we employed murine liver carcinoma Harvey Rat Sarcoma Virus (H-Ras) cells, in which reactivation of p53 expression induces senescence. Senescent and nonsenescent cell extracts were subjected to high-resolution proton (1H)-NMR spectroscopy-based metabolomics, and dynamic metabolic changes during senescence were analyzed using a magnetic resonance spectroscopy (MRS)-compatible cell perfusion system. Additionally, the ability of intact senescent cells to degrade the extracellular matrix (ECM) was quantified in the cell perfusion system. Analysis of senescent H-Ras cell extracts revealed elevated sn-glycero-3-phosphocholine, myoinositol, taurine, and creatine levels, with decreases in glycine, o-phosphocholine, threonine, and valine. These metabolic findings were accompanied by a greater degradation index of the ECM in senescent H-Ras cells than in control H-Ras cells. MRS studies with the cell perfusion system revealed elevated creatine levels in senescent cells on Day 4, confirming the 1H-NMR results. These senescence-associated changes in metabolism and ECM degradation strongly impact growth and redox metabolism and reveal potential MRS signals for detecting senescent cancer cells in vivo.

2.
Eur J Nucl Med Mol Imaging ; 48(13): 4246-4258, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34117896

RESUMO

PURPOSE: Highly cytotoxic α-particle radiotherapy delivered by tumor-selective nanocarriers is evaluated on metastatic Triple Negative Breast Cancer (TNBC). On vascularized tumors, the limited penetration of nanocarriers (<50-80 µm) combined with the short range of α-particles (40-100 µm) may, however, result in only partial tumor irradiation, compromising efficacy. Utilizing the α-particle emitter Actinium-225 (225Ac), we studied how the therapeutic potential of a general delivery strategy using nanometer-sized engineered liposomes was affected by two key transport-driven properties: (1) the release from liposomes, when in the tumor interstitium, of the highly diffusing 225Ac-DOTA that improves the uniformity of tumor irradiation by α-particles and (2) the adhesion of liposomes on the tumors' ECM that increases liposomes' time-integrated concentrations within tumors and, therefore, the tumor-delivered radioactivities. METHODS: On an orthotopic MDA-MB-231 TNBC murine model forming spontaneous metastases, we evaluated the maximum tolerated dose (MTD), biodistributions, and control of tumor growth and/or spreading after administration of 225Ac-DOTA-encapsulating liposomes, with different combinations of the two transport-driven properties. RESULTS: At 83% of MTD, 225Ac-DOTA-encapsulating liposomes with both properties (1) eliminated formation of spontaneous metastases and (2) best inhibited the progression of orthotopic xenografts, compared to liposomes lacking one or both properties. These findings were primarily affected by the extent of uniformity of the intratumoral microdistributions of 225Ac followed by the overall tumor uptake of radioactivity. At the MTD, long-term toxicities were not detected 9.5 months post administration. CONCLUSION: Our findings demonstrate the potential of a general, transport-driven strategy enabling more uniform and prolonged solid tumor irradiation by α-particles without cell-specific targeting.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Partículas alfa/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Humanos , Lipossomos , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/radioterapia
3.
Cancer Metastasis Rev ; 38(1-2): 51-64, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30840168

RESUMO

Hypoxia in cancers has evoked significant interest since 1955 when Thomlinson and Gray postulated the presence of hypoxia in human lung cancers, based on the observation of necrosis occurring at the diffusion limit of oxygen from the nearest blood vessel, and identified the implication of these observations for radiation therapy. Coupled with discoveries in 1953 by Gray and others that anoxic cells were resistant to radiation damage, these observations have led to an entire field of research focused on exploiting oxygenation and hypoxia to improve the outcome of radiation therapy. Almost 65 years later, tumor heterogeneity of nearly every parameter measured including tumor oxygenation, and the dynamic landscape of cancers and their microenvironments are clearly evident, providing a strong rationale for cancer personalized medicine. Since hypoxia is a major cause of extracellular acidosis in tumors, here, we have focused on the applications of imaging to understand the effects of hypoxia in tumors and to target hypoxia in theranostic strategies. Molecular and functional imaging have critically important roles to play in personalized medicine through the detection of hypoxia, both spatially and temporally, and by providing new understanding of the role of hypoxia in cancer aggressiveness. With the discovery of the hypoxia-inducible factor (HIF), the intervening years have also seen significant progress in understanding the transcriptional regulation of hypoxia-induced genes. These advances have provided the ability to silence HIF and understand the associated molecular and functional consequences to expand our understanding of hypoxia and its role in cancer aggressiveness. Most recently, the development of hypoxia-based theranostic strategies that combine detection and therapy are further establishing imaging-based treatment strategies for precision medicine of cancer.


Assuntos
Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Hipóxia Tumoral/fisiologia , Animais , Humanos , Imageamento por Ressonância Magnética , Metástase Neoplásica , Neoplasias/irrigação sanguínea , Tomografia por Emissão de Pósitrons
4.
NMR Biomed ; 32(10): e4053, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30693605

RESUMO

Because of the spatial and temporal heterogeneities of cancers, technologies to investigate cancer cells and the consequences of their interactions with abnormal physiological environments, such as hypoxia and acidic extracellular pH, with stromal cells, and with the extracellular matrix, under controlled conditions, are valuable to gain insights into the functioning of cancers. These insights can lead to an understanding of why cancers invade and metastasize, and identify effective treatment strategies. Here we have provided an overview of the applications of MRI/MRS/MRSI to investigate intact perfused cancer cells, their metabolism and invasion, and their interactions with stromal cells and the extracellular matrix.


Assuntos
Comunicação Celular , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Neoplasias/metabolismo , Neoplasias/patologia , Perfusão , Humanos , Invasividade Neoplásica , Células Estromais/patologia
5.
Br J Cancer ; 119(5): 622-630, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30206370

RESUMO

BACKGROUND: Tumour carbonic anhydrase IX (CAIX), a hypoxia-inducible tumour-associated cell surface enzyme, is thought to acidify the tumour microenvironment by hydrating CO2 to form protons and bicarbonate, but there is no definitive evidence for this in solid tumours in vivo. METHODS: We used 1H magnetic resonance spectroscopic imaging (MRSI) of the extracellular pH probe imidazolyl succinic acid (ISUCA) to measure and spatially map extracellular pH in HCT116 tumours transfected to express CAIX and empty vector controls in SCID mice. We also measured intracellular pH in situ with 31P MRS and measured lactate in freeze-clamped tumours. RESULTS: CAIX-expressing tumours had 0.15 pH-unit lower median extracellular pH than control tumours (pH 6.71 tumour vs pH 6.86 control, P = 0.01). Importantly, CAIX expression imposed an upper limit for tumour extracellular pH at 6.93. Despite the increased lactate concentration in CAIX-expressing tumours, 31P MRS showed no difference in intracellular pH, suggesting that CAIX acidifies only the tumour extracellular space. CONCLUSIONS: CAIX acidifies the tumour microenvironment, and also provides an extracellular pH control mechanism. We propose that CAIX thus acts as an extracellular pH-stat, maintaining an acidic tumour extracellular pH that is tolerated by cancer cells and favours invasion and metastasis.


Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Neoplasias Colorretais/patologia , Ácido Láctico/análise , Animais , Hipóxia Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Células HCT116 , Humanos , Imidazóis/química , Camundongos , Transplante de Neoplasias , Espectroscopia de Prótons por Ressonância Magnética , Microambiente Tumoral
7.
Addict Biol ; 22(5): 1459-1472, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27273582

RESUMO

Robust neuroimaging markers of neuropsychiatric disorders have proven difficult to obtain. In alcohol use disorders, profound brain structural deficits can be found in severe alcoholic patients, but the heterogeneity of unimodal MRI measurements has so far precluded the identification of selective biomarkers, especially for early diagnosis. In the present work we used a combination of multiple MRI modalities to provide comprehensive and insightful descriptions of brain tissue microstructure. We performed a longitudinal experiment using Marchigian-Sardinian (msP) rats, an established model of chronic excessive alcohol consumption, and acquired multi-modal images before and after 1 month of alcohol consumption (6.8 ± 1.4 g/kg/day, mean ± SD), as well as after 1 week of abstinence with or without concomitant treatment with the antirelapse opioid antagonist naltrexone (2.5 mg/kg/day). We found remarkable sensitivity and selectivity to accurately classify brains affected by alcohol even after the relative short exposure period. One month drinking was enough to imprint a highly specific signature of alcohol consumption. Brain alterations were regionally specific and affected both gray and white matter and persisted into the early abstinence state without any detectable recovery. Interestingly, naltrexone treatment during early abstinence resulted in subtle brain changes that could be distinguished from non-treated abstinent brains, suggesting the existence of an intermediate state associated with brain recovery from alcohol exposure induced by medication. The presented framework is a promising tool for the development of biomarkers for clinical diagnosis of alcohol use disorders, with capacity to further inform about its progression and response to treatment.


Assuntos
Encéfalo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Consumo de Bebidas Alcoólicas , Alcoolismo , Animais , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Estudos Longitudinais , Imageamento por Ressonância Magnética , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Ratos
8.
Mol Ther ; 23(1): 130-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25070719

RESUMO

The main objective of this work is to demonstrate the feasibility of using bone marrow-derived stem cells in treating a neurodegenerative disorder such as Friedreich's ataxia. In this disease, the dorsal root ganglia of the spinal cord are the first to degenerate. Two groups of mice were injected intrathecally with mesenchymal stem cells isolated from either wild-type or Fxntm1Mkn/Tg(FXN)YG8Pook (YG8) mice. As a result, both groups presented improved motor skills compared to nontreated mice. Also, frataxin expression was increased in the dorsal root ganglia of the treated groups, along with lower expression of the apoptotic markers analyzed. Furthermore, the injected stem cells expressed the trophic factors NT3, NT4, and BDNF, which bind to sensory neurons of the dorsal root ganglia and increase their survival. The expression of antioxidant enzymes indicated that the stem cell-treated mice presented higher levels of catalase and GPX-1, which are downregulated in the YG8 mice. There were no significant differences in the use of stem cells isolated from wild-type and YG8 mice. In conclusion, bone marrow mesenchymal stem cell transplantation, both autologous and allogeneic, is a feasible therapeutic option to consider in delaying the neurodegeneration observed in the dorsal root ganglia of Friedreich's ataxia patients.


Assuntos
Ataxia de Friedreich/terapia , Gânglios Espinais/patologia , Proteínas de Ligação ao Ferro/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Catalase/genética , Catalase/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Feminino , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Gânglios Espinais/metabolismo , Expressão Gênica , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Injeções Espinhais , Proteínas de Ligação ao Ferro/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Atividade Motora , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Neurotrofina 3/genética , Neurotrofina 3/metabolismo , Transplante Autólogo , Transplante Homólogo , Glutationa Peroxidase GPX1 , Frataxina
9.
NMR Biomed ; 28(8): 937-947, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26058575

RESUMO

There is intense interest in developing non-invasive prognostic biomarkers of tumor response to therapy, particularly with regard to hypoxia. It has been suggested that oxygen sensitive MRI, notably blood oxygen level-dependent (BOLD) and tissue oxygen level-dependent (TOLD) contrast, may provide relevant measurements. This study examined the feasibility of interleaved T2*- and T1-weighted oxygen sensitive MRI, as well as R2* and R1 maps, of rat tumors to assess the relative sensitivity to changes in oxygenation. Investigations used cohorts of Dunning prostate R3327-AT1 and R3327-HI tumors, which are reported to exhibit distinct size-dependent levels of hypoxia and response to hyperoxic gas breathing. Proton MRI R1 and R2* maps were obtained for tumors of anesthetized rats (isoflurane/air) at 4.7 T. Then, interleaved gradient echo T2*- and T1-weighted images were acquired during air breathing and a 10 min challenge with carbogen (95% O2 -5% CO2). Signals were stable during air breathing, and each type of tumor showed a distinct signal response to carbogen. T2* (BOLD) response preceded T1 (TOLD) responses, as expected. Smaller HI tumors (reported to be well oxygenated) showed the largest BOLD and TOLD responses. Larger AT1 tumors (reported to be hypoxic and resist modulation by gas breathing) showed the smallest response. There was a strong correlation between BOLD and TOLD signal responses, but ΔR2* and ΔR1 were only correlated for the HI tumors. The magnitude of BOLD and TOLD signal responses to carbogen breathing reflected expected hypoxic fractions and oxygen dynamics, suggesting potential value of this test as a prognostic biomarker of tumor hypoxia.


Assuntos
Biomarcadores Tumorais/metabolismo , Dióxido de Carbono/administração & dosagem , Dióxido de Carbono/farmacocinética , Espectroscopia de Ressonância Magnética/métodos , Oxigênio/metabolismo , Neoplasias da Próstata/metabolismo , Administração por Inalação , Animais , Hipóxia Celular , Linhagem Celular Tumoral , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Masculino , Oximetria/métodos , Oxigênio/administração & dosagem , Oxigênio/farmacocinética , Neoplasias da Próstata/diagnóstico , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Nanomedicine ; 11(6): 1345-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25888277

RESUMO

Liposomal drug delivery vehicles are promising nanomedicine tools for bringing cytotoxic drugs to cancerous tissues selectively. However, the triggered cargo release from liposomes in response to a target-specific stimulus has remained elusive. We report on functionalizing stealth-liposomes with an engineered ion channel and using these liposomes in vivo for releasing an imaging agent into a cerebral glioma rodent model. If the ambient pH drops below a threshold value, the channel generates temporary pores on the liposomes, thus allowing leakage of the intraluminal medicines. By using magnetic resonance spectroscopy and imaging, we show that engineered liposomes can detect the mildly acidic pH of the tumor microenvironment with 0.2 pH unit precision and they release their content into C6 glioma tumors selectively, in vivo. A drug delivery system with this level of sensitivity and selectivity to environmental stimuli may well serve as an optimal tool for environmentally-triggered and image-guided drug release. FROM THE CLINICAL EDITOR: Cancer remains a leading cause of mortality worldwide. With advances in science, delivery systems of anti-cancer drugs have also become sophisticated. In this article, the authors designed and characterized functionalized liposomal vehicles, which would release the drug payload in a highly sensitive manner in response to a change in pH environment in an animal glioma model. The novel data would enable better future designs of drug delivery systems.


Assuntos
Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Portadores de Fármacos , Glioblastoma/patologia , Concentração de Íons de Hidrogênio , Canais Iônicos/química , Lipossomos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Front Mol Biosci ; 11: 1354076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584702

RESUMO

Fibroblasts are versatile cells that play a major role in wound healing by synthesizing and remodeling the extracellular matrix (ECM). In cancers, fibroblasts play an expanded role in tumor progression and dissemination, immunosuppression, and metabolic support of cancer cells. In prostate cancer (PCa), fibroblasts have been shown to induce growth and increase metastatic potential. To further understand differences in the functions of human PCa associated fibroblasts (PCAFs) compared to normal prostate fibroblasts (PFs), we investigated the metabolic profile and ECM degradation characteristics of PFs and PCAFs using a magnetic resonance imaging and spectroscopy compatible intact cell perfusion assay. To further understand how PFs and PCAFs respond to hypoxic tumor microenvironments that are often observed in PCa, we characterized the effects of hypoxia on PF and PCAF metabolism, invasion and PD-L1 expression. We found that under normoxia, PCAFs displayed decreased ECM degradation compared to PFs. Under hypoxia, ECM degradation by PFs increased, whereas PCAFs exhibited decreased ECM degradation. Under both normoxia and hypoxia, PCAFs and PFs showed significantly different metabolic profiles. PD-L1 expression was intrinsically higher in PCAFs compared to PFs. Under hypoxia, PD-L1 expression increased in PCAFs but not in PFs. Our data suggest that PCAFs may not directly induce ECM degradation to assist in tumor dissemination, but may instead create an immune suppressive tumor microenvironment that further increases under hypoxic conditions. Our data identify the intrinsic metabolic, ECM degradation and PD-L1 expression differences between PCAFs and PFs under normoxia and hypoxia that may provide novel targets in PCa treatment.

12.
Bioeng Transl Med ; 7(2): e10266, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600657

RESUMO

Partial and/or heterogeneous irradiation of established (i.e., large, vascularized) tumors by α-particles that exhibit only a 4-5 cell-diameter range in tissue, limits the therapeutic effect, since regions not being hit by the high energy α-particles are likely not to be killed. This study aims to mechanistically understand a delivery strategy to uniformly distribute α-particles within established solid tumors by simultaneously delivering the same α-particle emitter by two diverse carriers, each killing a different region of the tumor: (1) the cancer-agnostic, but also tumor-responsive, liposomes engineered to best irradiate tumor regions far from the vasculature, and (2) a separately administered, antibody, targeting any cancer-cell's surface marker, to best irradiate the tumor perivascular regions. We demonstrate that on a prostate specific membrane antigen (PSMA)-expressing prostate cancer xenograft mouse model, for the same total injected radioactivity of the α-particle emitter Actinium-225, any radioactivity split ratio between the two carriers resulted in better tumor growth inhibition compared to the tumor inhibition when the total radioactivity was delivered by any of the two carriers alone. This finding was due to more uniform tumor irradiation for the same total injected radioactivity. The killing efficacy was improved even though the tumor-absorbed dose delivered by the combined carriers was lower than the tumor-absorbed dose delivered by the antibody alone. Studies on spheroids with different receptor-expression, used as surrogates of the tumors' avascular regions, demonstrated that our delivery strategy is valid even for as low as 1+ (ImmunoHistoChemistry score) PSMA-levels. The findings presented herein may hold clinical promise for those established tumors not being effectively eradicated by current α-particle radiotherapies.

13.
J Nucl Med ; 63(8): 1223-1230, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34795012

RESUMO

α-particle radiotherapy has already been shown to be impervious to most resistance mechanisms. However, in established (i.e., large, vascularized) soft-tissue lesions, the diffusion-limited penetration depths of radiolabeled antibodies or nanocarriers (≤50-80 µm) combined with the short range of α-particles (4-5 cell diameters) may result in only partial tumor irradiation, potentially limiting treatment efficacy. To address this challenge, we combined carriers with complementary intratumoral microdistributions of the delivered α-particles. We used the α-particle generator 225Ac, and we combined a tumor-responsive liposome (which, on tumor uptake, releases into the interstitium a highly diffusing form of its radioactive payload [225Ac-DOTA], potentially penetrating the deeper parts of tumors where antibodies do not reach) with a separately administered, less-penetrating radiolabeled antibody (irradiating the tumor perivascular regions where liposome contents clear too quickly). Methods: In a murine model with orthotopic human epidermal growth factor receptor 2-positive BT474 breast cancer xenografts, the biodistributions of each carrier were evaluated, and the control of tumor growth was monitored after administration of the same total radioactivity of 225Ac delivered by the 225Ac-DOTA-encapsulating liposomes, by the 225Ac-DOTA-SCN--labeled trastuzumab, and by both carriers at equally split radioactivities. Results: Tumor growth was significantly more inhibited when the same total injected radioactivity was divided between the 2 separate carriers than when delivered by either of the carriers alone. The combined carriers enabled more uniform intratumoral microdistributions of α-particles, at a tumor dose that was lower than the dose delivered by the antibody alone. Conclusion: This strategy demonstrates that more uniform microdistributions of the delivered α-particles within established solid tumors improve efficacy even at lower tumor doses. Augmentation of antibody-targeted α-particle therapies with tumor-responsive liposomes may address partial tumor irradiation, improving therapeutic effects.


Assuntos
Actínio , Lipossomos , Actínio/uso terapêutico , Partículas alfa/uso terapêutico , Animais , Anticorpos , Linhagem Celular Tumoral , Humanos , Camundongos , Radioimunoterapia
14.
NMR Biomed ; 24(1): 1-16, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21259366

RESUMO

Tumor hypoxia results from the negative balance between the oxygen demands of the tissue and the capacity of the neovasculature to deliver sufficient oxygen. The resulting oxygen deficit has important consequences with regard to the aggressiveness and malignancy of tumors, as well as their resistance to therapy, endowing the imaging of hypoxia with vital repercussions in tumor prognosis and therapy design. The molecular and cellular events underlying hypoxia are mediated mainly through hypoxia-inducible factor, a transcription factor with pleiotropic effects over a variety of cellular processes, including oncologic transformation, invasion and metastasis. However, few methodologies have been able to monitor noninvasively the oxygen tensions in vivo. MRI and MRS are often used for this purpose. Most MRI approaches are based on the effects of the local oxygen tension on: (i) the relaxation times of (19)F or (1)H indicators, such as perfluorocarbons or their (1)H analogs; (ii) the hemodynamics and magnetic susceptibility effects of oxy- and deoxyhemoglobin; and (iii) the effects of paramagnetic oxygen on the relaxation times of tissue water. (19)F MRS approaches monitor tumor hypoxia through the selective accumulation of reduced nitroimidazole derivatives in hypoxic zones, whereas electron spin resonance methods determine the oxygen level through its influence on the linewidths of appropriate paramagnetic probes in vivo. Finally, Overhauser-enhanced MRI combines the sensitivity of EPR methodology with the resolution of MRI, providing a window into the future use of hyperpolarized oxygen probes.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Biomarcadores/metabolismo , Hipóxia Celular , Humanos
15.
Biomacromolecules ; 12(8): 2902-7, 2011 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-21728317

RESUMO

The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) allows the efficient and complete functionalization of dendrimers with preformed Gd chelates (prelabeling) to give monodisperse macromolecular contrast agents (CAs) for magnetic resonance imaging (MRI). This monodispersity contrasts with the typical distribution of materials obtained by classical routes and facilitates the characterization and quality control demanded for clinical applications. The potential of a new family of PEG-dendritic CA based on a gallic acid-triethylene glycol (GATG) core functionalized with up to 27 Gd complexes has been explored in vitro and in vivo, showing contrast enhancements similar to those of Gadomer-17, which reveals them to be a promising platform for the development of CA for MRI.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Animais , Ácido Gálico/química , Humanos , Camundongos , Polietilenoglicóis/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Cancer Metab ; 9(1): 10, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608051

RESUMO

BACKGROUND: Harnessing the power of the immune system by using immune checkpoint inhibitors has resulted in some of the most exciting advances in cancer treatment. The full potential of this approach has, however, not been fully realized for treating many cancers such as pancreatic and breast cancer. Cancer metabolism influences many aspects of cancer progression including immune surveillance. An expanded understanding of how cancer metabolism can directly impact immune checkpoints may allow further optimization of immunotherapy. We therefore investigated, for the first time, the relationship between the overexpression of choline kinase-α (Chk-α), an enzyme observed in most cancers, and the expression of the immune checkpoint PD-L1. METHODS: We used small interfering RNA to downregulate Chk-α, PD-L1, or both in two triple-negative human breast cancer cell lines (MDA-MB-231 and SUM-149) and two human pancreatic ductal adenocarcinoma cell lines (Pa09C and Pa20C). The effects of the downregulation were studied at the genomic, proteomic, and metabolomic levels. The findings were compared with the results obtained by the analysis of public data from The Cancer Genome Atlas Program. RESULTS: We identified an inverse dependence between Chk-α and PD-L1 at the genomic, proteomic, and metabolomic levels. We also found that prostaglandin-endoperoxide synthase 2 (COX-2) and transforming growth factor beta (TGF-ß) play an important role in this relationship. We independently confirmed this relationship in human cancers by analyzing data from The Cancer Genome Atlas Program. CONCLUSIONS: Our data identified previously unknown roles of PD-L1 in cancer cell metabolic reprogramming, and revealed the immunosuppressive increased PD-L1 effect of Chk-α downregulation. These data suggest that PD-L1 regulation of metabolism may be mediated through Chk-α, COX-2, and TGF-ß. The observations provide new insights that can be applied to the rational design of combinatorial therapies targeting immune checkpoints and cancer metabolism.

17.
Top Curr Chem (Cham) ; 378(1): 15, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31938922

RESUMO

Nowadays, biomaterials have become a crucial element in numerous biomedical, preclinical, and clinical applications. The use of nanoparticles entails a great potential in these fields mainly because of the high ratio of surface atoms that modify the physicochemical properties and increases the chemical reactivity. Among them, carbon nanotubes (CNTs) have emerged as a powerful tool to improve biomedical approaches in the management of numerous diseases. CNTs have an excellent ability to penetrate cell membranes, and the sp2 hybridization of all carbons enables their functionalization with almost every biomolecule or compound, allowing them to target cells and deliver drugs under the appropriate environmental stimuli. Besides, in the new promising field of artificial biomaterial generation, nanotubes are studied as the load in nanocomposite materials, improving their mechanical and electrical properties, or even for direct use as scaffolds in body tissue manufacturing. Nevertheless, despite their beneficial contributions, some major concerns need to be solved to boost the clinical development of CNTs, including poor solubility in water, low biodegradability and dispersivity, and toxicity problems associated with CNTs' interaction with biomolecules in tissues and organs, including the possible effects in the proteome and genome. This review performs a wide literature analysis to present the main and latest advances in the optimal design and characterization of carbon nanotubes with biomedical applications, and their capacities in different areas of preclinical research.


Assuntos
Nanomedicina/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/análise , Animais , Humanos , Modelos Moleculares , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/ultraestrutura
18.
Front Neuroanat ; 14: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676012

RESUMO

Magnetic resonance imaging (MRI) data of children with late diagnosed congenital hypothyroidism and cognitive alterations such as abnormal verbal memory processing suggest altered telencephalic commissural connections. The corpus callosum (CC) is the major inter-hemispheric commissure that contra-laterally connects neocortical areas. However, in late diagnosed neonates with congenital hypothyroidism, the possible effect of early transient and chronic postnatal hypothyroidism still remains unknown. We have studied the development of the anterior, middle and posterior CC, using in vivo MRI and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group, as a model for early transient hypothyroidism, was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to 21. Another group modeling chronic hypothyroid, were treated with MMI from P0 to 150 and from embryonic day 10 to P170. The results obtained from these groups were compared with same age control rats. The normalized T2 signal obtained using MRI was higher in MMI-treated rats and correlated with a low number and percentage of myelinated axons. The number and density of myelinated axons decreased in transient and chronic hypothyroid rats at P150. The g-ratio (inner to outer diameter ratio) and the estimated conduction velocity of myelinated axons were similar between MMI-treated and controls, but the conduction delay decreased in the posterior CC of MMI-treated rats compared to controls. These data show that early postnatal transient and chronic hypothyroidism alters CC maturation in a way that may affect the callosal transfer of information. These alterations cannot be reversed after delayed T4-treatment. Our data support the findings of neurocognitive delay in late T4-treated children with congenital hypothyroidism.

19.
Front Oncol ; 10: 614365, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33718115

RESUMO

PURPOSE: The inhibition of immune checkpoints such as programmed cell death ligand-1 (PD-L1/CD274) with antibodies is providing novel opportunities to expose cancer cells to the immune system. Antibody based checkpoint blockade can, however, result in serious autoimmune complications because normal tissues also express immune checkpoints. As sequence-specific gene-silencing agents, the availability of siRNA has significantly expanded the specificity and range of "druggable" targets making them promising agents for precision medicine in cancer. Here, we have demonstrated the ability of a novel biodegradable dextran based theranostic nanoparticle (NP) to deliver siRNA downregulating PD-L1 in tumors. Optical imaging highlighted the importance of NP delivery and accumulation in tumors to achieve effective downregulation with siRNA NPs, and demonstrated low delivery and accumulation in several PD-L1 expressing normal tissues. METHODS: The dextran scaffold was functionalized with small molecules containing amine groups through acetal bonds. The NP was decorated with a Cy5.5 NIR probe allowing visualization of NP delivery, accumulation, and biodistribution. MDA-MB-231 triple negative human breast cancer cells were inoculated orthotopically or subcutaneously to achieve differences in vascular delivery in the tumors. Molecular characterization of PD-L1 mRNA and protein expression in cancer cells and tumors was performed with qRT-PCR and immunoblot analysis. RESULTS: The PD-L1 siRNA dextran NPs effectively downregulated PD-L1 in MDA-MB-231 cells. We identified a significant correlation between NP delivery and accumulation, and the extent of PD-L1 downregulation, with in vivo imaging. The size of the NP of ~ 20 nm allowed delivery through leaky tumor vasculature but not through the vasculature of high PD-L1 expressing normal tissue such as the spleen and lungs. CONCLUSIONS: Here we have demonstrated, for the first time, the feasibility of downregulating PD-L1 in tumors using siRNA delivered with a biodegradable dextran polymer that was decorated with an imaging reporter. Our data demonstrate the importance of tumor NP delivery and accumulation in achieving effective downregulation, highlighting the importance of imaging in siRNA NP delivery. Effective delivery of these siRNA carrying NPs in the tumor but not in normal tissues may mitigate some of the side-effects of immune checkpoint inhibitors by sparing PD-L1 inhibition in these tissues.

20.
Magn Reson Imaging ; 58: 67-75, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30660705

RESUMO

INTRODUCTION: Functional magnetic resonance imaging (fMRI) is one of the most highly regarded techniques in the neuroimaging field. This technique is based on vascular responses to neuronal activation and is extensively used in clinical and animal research studies. In preclinical settings, fMRI is usually applied to anesthetized animals. However, anesthetics cause alterations, e.g. hypothermia, in the physiology of the animals and this has the potential to disrupt fMRI signals. The current temperature control method involves a technician, as well as monitoring the acquisition MRI sequences, also controlling the temperature of the animal; this is inefficient. METHODS: In order to avoid hypothermia in anesthetized rodents an Open-Source automatic temperature control device is presented. It takes signals from an intrarectal temperature sensor, as well as signals from a thermal bath, which warms up the body of the animal under study, in order to determine the mathematical model of the thermal response of the animal. RESULTS: A Proportional-Integral-Derivative (PID) algorithm, which was discretized in an Arduino microcontroller, was developed to automatically keep stable the body temperature of the animal under study. The PID algorithm has been shown to be accurate in preserving the body temperature of the animal. CONCLUSION: This work presents the TherMouseDuino. It is an Open-Source automatic temperature control system and reduces temperature fluctuations, thus providing robust conditions in which to perform fMRI experiments. Furthermore, our device frees up the technician to focus solely on monitoring the MRI sequences.


Assuntos
Desenho de Equipamento , Hipotermia Induzida , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Algoritmos , Animais , Temperatura Corporal , Computadores , Temperatura Alta , Camundongos , Modelos Teóricos , Neuroimagem/instrumentação , Neuroimagem/métodos , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA