Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Soft Matter ; 20(18): 3742-3754, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38619818

RESUMO

Engineered molecules with tailored molecular structures have the potential to advance various disciplines by enhancing the properties of biological membranes. In this study, we investigated the fundamental interfacial behavior of newly synthesized, water insoluble, cationic pyridinium-carboxylate based gemini surfactants (GSs) using picolinic acid (PA), nicotinic acid (NA), and isonicotinic acid (INA) and their interactions with dipalmitoylphosphatidylcholine (DPPC) in Langmuir and Langmuir-Blodgett (LB) films. Two synthetic methodologies were employed: (a) connecting two alkyl pyridinecarboxylates through the nitrogen atoms with a xylenyl spacer, namely, PAGS, NAGS1, and INAGS; and (b) dimerizing two nicotinic acid molecules through ester linkages with 1,4-benzenedimethanol, and then quaternizing the pyridine nitrogens with hexadecyl chains to yield NAGS2. A combination of Brewster angle microscopy (BAM) and atomic force microscopy (AFM) imaging techniques yielded valuable insights into the morphology of the GS films and their mixtures with DPPC. Density functional theory (DFT) calculations were used to gain further information on the GSs structures and understand their assembly. The results indicate that the film of INAGS is the most hydrophobic film, and its monolayer is the least compressible. When the nitrogen atom and a carboxylate group of the headgroup are positioned closer to each other, the GS molecules tend to form aggregates instead of a continuous film which is observed for the INAGS surfactant. This observation is consistent with the DFT energy values of pair interactions, indicating that both PAGS and NAGS1 have closely packed conformations with high stabilization energy.

2.
Langmuir ; 39(46): 16503-16512, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37931181

RESUMO

A recently reported anionic gemini surfactant, a member of the so-called "gemini without a linker" family, has recently been reported to form closely packed crystalline monolayers at the air-water interface. In this work, the impact on monolayer properties of the compound, C18-0-C18, that result from its mixing with a benchmark perfluorinated surfactant, perfluorotetradecanoic acid (PF), is explored. The films exhibit nonideal mixing, as determined by surface pressure-area (π-A) isotherms and surface potential measurements, and phase-separation between the two components was observed by the direct visualization of the monolayers, and grazing-incident X-ray diffraction at the air-water interface. The pure and mixed films follow similar trends in the order of C18-0-C18 < PF < χPF = 0.50 mixed films for both their extent of hysteresis and their stability at the air-water interface. Further, crystallographic data for the mixed film emerge as a simple combination of distinct diffraction patterns characteristic of both the individual components, consistent with the other findings reported here and thus clarify the intermolecular behavior of the binary mixture at the surface.

3.
Langmuir ; 38(51): 16004-16013, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36521073

RESUMO

Fundamental physical chemical properties of monolayers formed from a new anionic gemini surfactant with a minimal-length (single-bond) spacer unit have been investigated at the air-water interface and compared with those of monolayers formed from affiliated comparator surfactants. The minimal spacer surfactant, dubbed C18-0-C18, exhibited strikingly different packing characteristics from an anionic gemini surfactant with a comparatively bulkier headgroup, including the formation of close-packed, crystalline films, and shared similar characteristics to simple fatty acid-based monolayers. Monolayers of C18-0-C18 also exhibited good stability at the air-water interface and transferred with reasonable efficiency to solid substrates, although the film integrity was compromised during the transfer. Results from this work suggest that the single-bond spacer approach might be more broadly useful for designing gemini surfactants that pack efficiently into ordered monolayers.

4.
Langmuir ; 38(28): 8524-8533, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35775397

RESUMO

We report the synthesis and monolayer properties of conventional and gemini surfactants composed of nicotinic acid-based head groups with an emphasis on assessing how chemical structures affect the behavior of monolayers. A combination of Brewster angle microscopy and atomic force microscopy showed that pure hexadecyl nicotinate formed rippled strands in monolayers, and the gemini correspondents with either flexible or rigid organic linkers resulted in lobed-compact domains, which provides a simple method for patterning air-water and solid-air interfaces. The structural differences between conventional and gemini nicotinic acid-based surfactants could be explained by the interplay between line tension (that favors the formation of circular domains), balanced by dipole-dipole repulsion interaction between headgroups, which promotes extended domains. Miscibility and morphology studies of the modified nicotinic acid surfactants with palmitic acid demonstrated that the properties of mixed films can be controlled by the structure of the former. Excess Gibbs free energies of mixing indicated that the mixed films were less stable than the pure monolayers, and the positive deviations from ideality were the largest in the case of gemini surfactants.


Assuntos
Niacina , Tensoativos , Micelas , Microscopia de Força Atômica , Tensoativos/química , Água/química
5.
Langmuir ; 37(28): 8357-8369, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34236880

RESUMO

Mixed monolayer films comprising hydrogenated and fluorinated surfactants can undergo phase separation to produce interfaces with diverse structures at the micrometer and nanometer scales. This review discusses our progress over the past decade to probe the relationship that exists between the molecular structure of the surfactants that comprise the films and the overall patterns formed in the monolayers. We review two main classes of mixed perfluorocarbon-hydrocarbon surfactant systems, including fatty acids and a recently developed family of EDTA-based gemini surfactants. In addition to summarizing the state-of-the-art of this field, the key scientific questions and relationships that require further elucidation are discussed, along with directions for continuing research into this fascinating area of research.

6.
Chemphyschem ; 21(16): 1858-1865, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32598077

RESUMO

A series of water soluble, surface-active ionic liquids (SAILs), namely, 1-alkyl-3-methyl imidazolium chlorides ([Cn -mim]Cl) and their mixtures with palmitic acid (PA) are investigated in Langmuir monolayers and Langmuir-Blodgett films. It is inferred from the surface pressure-area isotherms that C16 -mim-IL mixes non-ideally with PA and stabilizes the binary mixed films. In addition, the residence of mim-IL at the water surface is enhanced as a function of the increasing alkyl side chain length. Generally, the compressional moduli values decrease upon increasing the content of the mim-ILs over a wide range of compositions. Furthermore, film relaxation measurements indicate that the IL component is selectively excluded from the mixed films upon achieving a certain target pressure. Brewster angle microscope images demonstrate minimal changes on the PA domains in the presence of either C4 - and C8 -mim-ILs, whereas presence of the hexadecyl counterpart results in the formation of condensed sheets. Atomic force microscopy imaging of deposited films show the formation of propeller-like aggregates when C8 - or C16 -mim-IL is present in the mixed films.

7.
Langmuir ; 35(32): 10551-10560, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31309841

RESUMO

A new member of the N,N,N',N'-dialkyl-N,N'-diacetate ethylenediamine family of anionic gemini surfactants has been synthesized, and its miscibility with the model perfluorocarbon, perfluorotetradecanoic acid (PF), has been investigated in monolayer films at the air-water interface. Thermodynamics of mixing and the accompanying changes in the mixed film structure have been probed using a combination of compression isotherm measurements supported by Brewster angle microscope imaging and X-ray scattering measurements, and results have been compared with those collected for a previously studied, shorter tail chain variant of the surfactant. Thermodynamic measurements showed that the gemini surfactant and perfluorotetradecanoic acid were immiscible, with weak repulsive interactions, manifesting as small positive deviations from ideal mixing, observed between the two film components. Films were highly textured, with micrometer-scale, phase-separated domains readily detectable. Grazing incidence X-ray diffraction measurements showed that the gemini surfactant was disordered in the monolayers, whereas the perfluorocarbon formed discrete crystallites in the disordered matrix. Despite the small deviations from ideal mixing detected in the thermodynamic measurements, the X-ray measurements indicated that the presence of the gemini perturbs the PF crystal lattice from that of pure PF. Finally, X-ray reflectivity measurements showed that the addition of equimolar PF to the gemini monolayer induces a significant increase in the nominal head group thickness of the film, suggesting that interactions between the two surfactants can lead to structural rearrangements of gemini's head group near to the water surface.

8.
Langmuir ; 34(36): 10673-10683, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30102043

RESUMO

Synchrotron-based X-ray scattering measurements of phase-separated surfactant monolayers at the air-water interface provide molecular-level structural information about the packing and ordering of film components. In this work, grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity (XR) measurements were used to collect crystallographic structural information for binary mixed monolayers of arachidic acid (AA, C19H39COOH) with perfluorotetradecanoic acid (PA, C13F27COOH), a system that has previously been investigated using a variety of thermodynamic and micron-scale structural characterization methods. GIXD measurements at surface pressures of π = 5, 15, and 30 mN/m indicated that AA in pure and mixed films forms a rectangular lattice at π = 5 and 15 mN/m but a hexagonal lattice at π = 30 mN/m. PA formed hexagonal lattices under all conditions, with films being highly ordered and crystalline (as determined by Bragg peak width) at even the lowest surface pressures investigated. Phase separation occurred for all mixed monolayer film compositions and surface pressures, manifesting as diffraction peaks characteristic of the individual components appearing at different in-plane scattering vector qxy. For both pure and mixed films, the molecular tilt angle of the AA hydrocarbon chain toward the nearest-neighbor was substantial at low pressures but decreased with increasing pressure. The PA fluorocarbon chain showed negligible molecular tilt under all conditions, and was oriented normal to the subphase surface regardless of surface pressure or the presence of AA in the films. In all cases, the two components in the mixed film behaved entirely independently of film composition, which is exactly the expected result for a fully phase-separated, immiscible system. XR measurements of film thickness at the air-water interface supported these results; overall film thickness approached the calculated ideal surfactant tail lengths with increasing surface pressure, indicating nearly normal oriented surfactants. The overall surfactant packing and crystallographic features of the mixed monolayers are discussed in terms of the lipophobic nature of the perfluorinated surfactant as well as in context of thermodynamic miscibility and domain structure formation reported elsewhere in the literature for these mixed monolayer systems.

9.
J Phys Chem A ; 122(50): 9605-9614, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30475619

RESUMO

Several new polymers with rotatable zinc porphyrin pendants have been synthesized and their optical spectroscopic and photophysical properties, including upconversion efficiencies, determined in both fluid solution and thin films. Comparisons made with the ß-substituted zinc tetraphenylporphyrin monomers and ZnTPP itself reveal that the yield of triplets resulting from either Q-band or Soret-band excitation of the polymers is surprisingly small. A detailed kinetic analysis of the fluorescence decays and transient triplet absorptions of the substituted monomers and their corresponding polymers reveals that this phenomenon is due to two parallel internal singlet quenching processes assigned to transient intrachain excimer formation. Consequently, the yields of upconverted S2 fluorescence resulting from Q-band excitation in the degassed polymers are significantly diminished in both fluid solution and thin films. Implications of these results for the design of polymer upconverting systems are discussed.

10.
Langmuir ; 33(39): 10205-10215, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28873306

RESUMO

The miscibility and film structure of mixed Langmuir monolayer films composed of an anionic gemini N,N,N',N'-dialkyl-N,N'-diacetate ethylenediamine surfactant (Ace(12)-2-Ace(12)) with perfluorotetradecanoic acid (C13F27COOH; PF) have been investigated using a variety of thermodynamic and structural characterization methods. The two film components were found to be miscible in monolayers at the air-water interface over a range of compositions and at all but the lowest surface pressures, with attractive interactions occurring between the two components. While pure PF monolayers formed crystalline lattices with hexagonal symmetry and with the surfactant tails oriented normal to the underlying water subphase, the pure gemini surfactant formed amorphous films with little tendency to orient at the subphase. In mixed films with mole ratios of PF:Ace(12)-2-Ace(12) < 2.5, the miscibility of the two components resulted in a nearly complete loss of crystallinity of the PF, though films at higher mole fractions of PF showed some residual crystallinity, albeit with lattice structures that were significantly different from that of pure PF. Miscibility and film structure in this mixed system are discussed in comparison with other mixed gemini surfactant systems in the literature as well as binary mixtures of phospholipids or monomeric fatty acids with PF.

11.
Phys Chem Chem Phys ; 19(34): 23471-23482, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28829080

RESUMO

Spectroscopic, photophysical and computational studies designed to expose and explain the differences in the efficiencies of non-coherent photon upconversion (NCPU) by triplet-triplet annihilation (TTA) have been carried out for a new series of alkyl-substituted diphenyl and tetraphenyl zinc porphyrins, both in fluid solution and in solid films. Systematic variations in the alkyl-substitution of the phenyl groups in both the di- and tetraphenyl porphyrins introduces small, but well-understood changes in their spectroscopic and photophysical properties and in their TTA efficiencies. In degassed toluene solution TTA occurs for all derivatives and produces the fluorescent S2 product states in all cases. In PVA matrices, however, none of the di-phenylporphyrins exhibit measurable NCPU whereas all the tetraphenyl-substituted compounds remain upconversion-active. In PVA the NCPU efficiencies of the zinc tetraphenylporphyrins vary significantly with their steric characteristics; the most sterically crowded tetraphenyl derivative exhibits the greatest efficiency. DFT-D computations have been undertaken and help reveal the sources of these differences.

12.
Langmuir ; 32(21): 5341-9, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27163482

RESUMO

The phase separation of immiscible surfactants in mixed monolayer films provides an approach to physically manipulate important properties of thin films, including surface morphology, microscale composition, and mechanical properties. In this work, we predict, based upon existing miscibility studies and their thermodynamic underpinnings described in the literature, the miscibility and film morphology of mixed monolayers comprised of behenic acid (C21H43COOH) and perfluorotetradecanoic acid (C13F27COOH) in various molar ratios. Predictions are tested using a combination of experimental surface characterization methods for probing miscibility and film morphology at the solid/air and air/water interfaces. Film components were immiscible and phase-separated into chemically well-defined domains under a variety of experimental conditions, with monolayer morphology consistent with initial predictions. The extensibility of these basic predictions to other systems is discussed in the context of using these works for different perfluorinated surfactant molecules.

13.
Photochem Photobiol Sci ; 15(5): 609-17, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-26928071

RESUMO

Simple composite films consisting of a polymer blended with organic emitters have the potential for broad-band "white" light emission that can be used for general lighting applications. In the present work, a simple mixture of 3-hydroxyisoquinoline (HIQ) with Nile Red (NR) in a polymeric matrix of polyvinyl alcohol (PVA) is used to generate white light through a non-radiative excitation energy transfer (NREET) mechanism. NREET between HIQ and NR doped in PVA films is investigated using a combination of steady state and time resolved fluorescence spectroscopic methods. It is observed that NR has very weak fluorescence in the PVA film upon excitation at 400 nm, but upon mixing NR with HIQ, sensitized emission of NR is observed with decreased emission of HIQ. The behavior of the sensitized emission of NR is consistent with Förster resonance energy transfer (FRET) between the donor HIQ and acceptor NR. By adjusting the relative fractions of HIQ and NR in the films, the extent of FRET could be regulated and the overall film emission color could be manipulated to enable overall "white" (CIE color coordinates 0.34, 0.38) emission. The films showed excellent photostability with 405 nm diode illumination, along with mechanical flexibility, suggesting good potential utility as a down converting element for lighting applications.


Assuntos
Corantes Fluorescentes/química , Isoquinolinas/química , Oxazinas/química , Transferência Ressonante de Energia de Fluorescência , Luz , Álcool de Polivinil/química
14.
Langmuir ; 31(50): 13590-9, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26606470

RESUMO

Controlling aggregation of the dual sensitizer-emitter (S-E) zinc tetraphenylporphyrin (ZnTPP) is an important consideration in solid state noncoherent photon upconversion (NCPU) applications. The Langmuir-Blodgett (LB) technique is a facile means of preparing ordered assemblies in thin films to study distance-dependent energy transfer processes in S-E systems and was used in this report to control the aggregation of a functionalized ZnTPP on solid substrates. This was achieved by synthetic addition of a short polar tail to one of the pendant phenyl rings in ZnTPP in order to make it surface active. The surface active ZnTPP derivative formed rigid films at the air-water interface and exhibited mean molecular areas consistent with approximately vertically oriented molecules under appropriate film compression. A red shift in the UV-vis spectra as well as unquenched fluorescence emission of the LB films indicated formation of well-ordered aggregates. However, NCPU, present in the solution phase, was not observed in the LB films, suggesting that NCPU from ZnTPP as a dual S-E required not just a controlled aggregation but a specific orientation of the molecules with respect to each other.

15.
Phys Chem Chem Phys ; 16(47): 26252-60, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25363676

RESUMO

Dissolving zinc tetraphenylporphyrin in the tetraalkylphosphonium chloride ionic liquid P4448Cl results in progressive demetallation of the solute and quantitative production of the free base porphyrin. Aggregation of the free base occurs in which the monomer and J aggregates are in fully reversible thermal equilibrium in the ionic liquid. The thermodynamic, kinetic and spectroscopic behaviour of this system is described based on absorption, emission and excited state lifetime measurements. Both the thermodynamics of the ground state aggregation and the kinetics of the excited state relaxation processes are unusual due to the particular role played by the ionic liquid solvent.

16.
Chemistry ; 19(13): 4352-68, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23371815

RESUMO

Two dendrimers consisting of a cofacial free-base bisporphyrin held by a biphenylene spacer and functionalized with 4-benzeneoxomethane (5-(4-benzene)tri-10,15,20-(4-n-octylbenzene)zinc(II)porphyrin) using either five or six of the six available meso-positions, have been synthesized and characterized as models for the antenna effect in Photosystems I and II. The presence of the short linkers, -CH2O-, and long C8H17 soluble side chains substantially reduces the number of conformers (foldamers) compared with classic dendrimers built with longer flexible chains. This simplification assists in their spectroscopic and photophysical analysis, notably with respect to fluorescence resonance energy transfer (FRET). Both steady-state and time-resolved spectroscopic measurements indicate that the cofacial free bases and the flanking zinc(II)-porphyrin antennas act as energy acceptor and donor, respectively, following excitation in either the Q or Soret bands of the dendrimers. The rate constants for singlet electronic energy transfer (k(EET)) extracted from the S1 and S2 fluorescence lifetimes of the donor in the presence and absence of the acceptor are ≤ (0.1-0.3)×10(9) and ∼2×10(9)  s(-1) for S1→S1 (range from a bi-exponential decay model) and about 1.5×10(12)  s(-1) for S2→S(n) (n>1). Comparisons of these experimental data with those calculated from Förster theory using orientation factors and donor-acceptor distances extracted from computer modeling suggest that a highly restricted number of the many foldamers facilitate energy transfer. These foldamers have the lowest energy by molecular modeling and consist of one or at most two of the flanking zinc porphyrin antennas folded so they lie near the central artificial special pair core with the remaining antennas located almost parallel to and far from it.


Assuntos
Antracenos/química , Dendrímeros/síntese química , Metaloporfirinas/síntese química , Modelos Químicos , Dendrímeros/química , Transferência de Energia , Metaloporfirinas/química , Estrutura Molecular
17.
Photochem Photobiol Sci ; 12(6): 1079-85, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23572073

RESUMO

In this work, the steady state S0-S1 and S0-S2 absorption and emission behaviour of the water-soluble tetrakis(N-methyl-4-pyridyl)porphyrin zinc(ii) tetrachloride (ZnTMPyP) in media of constant and high ionic strength, both with and without iodide ions as a fluorescence quencher, was measured. The quenching of the ZnTMPyP S1 state by iodide ions proceeds primarily through diffusion-limited interaction in an encounter pair but the formation of a loose association between the ZnTMPyP S1 state and iodide ions also provides a minor quenching pathway. The ZnTMPyP S2 state was quenched minimally by iodide, likely through an electron transfer mechanism at an average donor-acceptor distance of ~0.7 nm. The results presented here highlight the notion that significant iodide quenching of the ZnTMPyP S1 state can be a source of inefficiencies in porphyrin-based dye-sensitized solar cells. The minimal quenching of the S2 state indicates that no significant loss of efficiency will be introduced by using iodide as component of the electrolyte system in upconversion by triplet-triplet annihilation (UC-TTA) enhanced solar cells.

18.
J Phys Chem A ; 117(26): 5419-27, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23755869

RESUMO

As part of a continuing effort to find noncoherent photon upconversion (NCPU) systems with improved energy conversion efficiencies, the photophysics of the blue emitter, anthanthrene (An), and the fullerene absorber-sensitizer, C60, have been examined by both steady-state and pulsed laser techniques. An is a promising candidate for NCPU by homomolecular triplet-triplet annihilation (TTA) because its triplet state lies ∼800 cm(-1) below the triplet energy of the C60 donor (thereby improving efficiency by reducing back triplet energy transfer), and its fluorescent singlet state lies in near resonance with double its triplet energy (thus minimizing thermal energy losses in the annihilation process). In fluid solution, efficient triplet-triplet donor-acceptor energy transfer is observed, and rate constants for homomolecular TTA in the An acceptor are estimated to approach the diffusion limit. NCPU is also observed in An + C60 in poly(methylmethacrylate) thin films.

19.
J Phys Chem A ; 117(33): 7833-40, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23869825

RESUMO

The photophysics of low-chlorin tin(IV) tetraphenylporphyrin dihydroxide, a core building block for axially substituted supramolecular tin porphyrin constructs, has been studied in a variety of hydrogen-bonding, nonpolar, and aprotic polar solvents using steady-state, nanosecond, and femtosecond time-resolved emission, and femtosecond time-resolved absorption methods. In hydrogen-bonding solvents the metalloporphyrin exists as solvated monomers, and its Soret-excited S2 state in these solvents exhibits the expected linear energy gap law relationship with first-order population decay times in the 0.8 to 1.7 ps range. Evidence is presented that this metalloporphyrin aggregates in other solvents at the concentrations typically used for these ultrafast measurements and yields species-averaged time-resolved data. Cw laser excitation in the Q-band under deaerated conditions produces weak S2-S0 fluorescence (photon upconversion) as a result of triplet-triplet annihilation.


Assuntos
Metaloporfirinas/química , Estanho/química , Estrutura Molecular , Processos Fotoquímicos , Soluções , Espectrofotometria Ultravioleta
20.
Langmuir ; 28(43): 15150-9, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23043367

RESUMO

Monolayer surfactant films composed of a mixture of phospholipids and perfluorinated (or partially fluorinated) surfactants are of potential utility for applications in pulmonary lung surfactant-based therapies. As a simple, minimal model of such a lung surfactant system, binary mixed monolayer films composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and perfluorooctadecanoic acid (C18F) prepared on a simplified lung fluid mimic subphase (pH 7.4, 150 mM NaCl) have been characterized in terms of mixing thermodynamics and compressibility (measured through π­A compression isotherms), film morphology (via atomic force, fluorescence, and Brewster angle microscopy), as well as spreading rate and hysteresis response to repeated expansion­contraction cycles for a variety of compositions of mixed films. Under all mixing conditions, films and their components were found to be completely immiscible and phase-separated, though there were significant changes in the aforementioned film properties as a function of composition. Of particular note was the existence of a maximum in the extent of immiscibility (characterized by ΔG(ex)(π) values) and enhanced surfactant recovery during hysteresis experiments at χ(C18F) ≥ 0.30. The latter was attributed to the relatively rapid respreading rate of the perfluorinated amphiphile in comparison with DPPC alone at the air­water interface, which enhances the performance of this mixture as a potential pulmonary lung surfactant. Further, monolayer film structure could be tracked dynamically as a function of compression at the air­water interface via Brewster angle microscopy, with the C18F component being preferentially squeezed out of the film with compression, but returning rapidly upon re-expansion. In general, addition of C18F to DPPC monolayers resulted in improvements to mechanical, structural, and respreading properties of the film, indicating the potential value of these compounds as additives to pulmonary lung surfactant formulations.


Assuntos
Ácidos Graxos/química , Halogenação , Fenômenos Mecânicos , Fosfolipídeos/química , Tensoativos/química , Cinética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA