Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 23(17): 5891-908, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26189030

RESUMO

Tankyrases-1 and -2 (TNKS-1 and TNKS-2) have three cellular roles which make them important targets in cancer. Using NAD(+) as a substrate, they poly(ADP-ribosyl)ate TRF1 (regulating lengths of telomeres), NuMA (facilitating mitosis) and axin (in wnt/ß-catenin signalling). Using molecular modelling and the structure of the weak inhibitor 5-aminoiso quinolin-1-one, 3-aryl-5-substituted-isoquinolin-1-ones were designed as inhibitors to explore the structure-activity relationships (SARs) for binding and to define the shape of a hydrophobic cavity in the active site. 5-Amino-3-arylisoquinolinones were synthesised by Suzuki-Miyaura coupling of arylboronic acids to 3-bromo-1-methoxy-5-nitro-isoquinoline, reduction and O-demethylation. 3-Aryl-5-methylisoquinolin-1-ones, 3-aryl-5-fluoroisoquinolin-1-ones and 3-aryl-5-methoxyisoquinolin-1-ones were accessed by deprotonation of 3-substituted-N,N,2-trimethylbenzamides and quench with an appropriate benzonitrile. SAR around the isoquinolinone core showed that aryl was required at the 3-position, optimally with a para-substituent. Small meta-substituents were tolerated but groups in the ortho-positions reduced or abolished activity. This was not due to lack of coplanarity of the rings, as shown by the potency of 4,5-dimethyl-3-phenylisoquinolin-1-one. Methyl and methoxy were optimal at the 5-position. SAR was rationalised by modelling and by crystal structures of examples with TNKS-2. The 3-aryl unit was located in a large hydrophobic cavity and the para-substituents projected into a tunnel leading to the exterior. Potency against TNKS-1 paralleled potency against TNKS-2. Most inhibitors were highly selective for TNKSs over PARP-1 and PARP-2. A range of highly potent and selective inhibitors is now available for cellular studies.


Assuntos
Tanquirases/química , Sítios de Ligação , Estrutura Molecular , Relação Estrutura-Atividade
2.
Bioorg Med Chem ; 21(17): 5218-27, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23849206

RESUMO

Poly(ADP-ribose)polymerase-1 (PARP-1) is an important target for drug design for several therapeutic applications. 5-Aminoisoquinolin-1-one (5-AIQ) is a highly water-soluble lead compound; synthetic routes to 3-substituted analogues were explored. Tandem Hurtley coupling of ß-diketones with 2-bromo-3-nitrobenzoic acid, retro-Claisen acyl cleavage and cyclisation gave the corresponding 3-substituted 5-nitroisocoumarins. Treatment with ammonia at high temperature and reduction with tin(II) chloride gave eleven target 3-substituted 5-AIQs, which were all soluble in water (>1% w/v) as their HCl salts. Most were more potent than 5-AIQ as inhibitors of PARP-1 and of PARP-2 in vitro, the most active being 5-amino-3-methylisoquinolin-1-one (PARP-1: IC50=0.23µM vs IC50=1.6µM for 5-AIQ). Some rationalisation of the SAR was achieved through molecular modelling.


Assuntos
Inibidores Enzimáticos/síntese química , Isoquinolinas/química , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Sítios de Ligação , Galinhas , Ciclização , Desenho de Fármacos , Inibidores Enzimáticos/química , Ligação de Hidrogênio , Isoquinolinas/síntese química , Simulação de Acoplamento Molecular , Poli(ADP-Ribose) Polimerases/metabolismo , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA